1
|
Killen BA, Willems M, Jonkers I. An open-source framework for the generation of OpenSim models with personalised knee joint geometries for the estimation of articular contact mechanics. J Biomech 2024; 177:112387. [PMID: 39488193 DOI: 10.1016/j.jbiomech.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Musculoskeletal modelling pipelines typically use generic models scaled to individual's anthropometry. The ability to represent variations in bone or joint geometry and alignment is highly limited. This may have a large effect, particularly when modelling contact between articular surfaces such as for the knee where articular contact mechanics are used to determine joint kinematics and the resulting cartilage contact pressures and locations. Here we describe a developed open-source framework for the personalisation of such models and compare dynamic simulation outputs. The framework involves three main steps: (1) positions personalised geometries from magnetic resonance imaging and replaces generic bone and contact geometries. (2) Repositions muscle and ligament attachments and via points and optimisation of wrapping surfaces to ensure physiological lengthening behaviour. Finally, (3) muscle and ligament properties are calibrated to ensure physiological behaviour. Following model creation, dynamic simulations from a single participant and gait trial were compared. Small changes in knee adduction/abduction and rotation angles were observed between models. Joint moment differences however were present in not only the knee but also hip and ankle joints. These differences resulted in changes in both the magnitude and location of knee joint contact pressure. The framework developed is automated and requires only minimal user interaction and is built using open-source software packages which can be freely downloaded and installed. The adoption of such personalised modelling approaches facilitates patient specific modelling and may provide more detailed information regarding disease progression, patient stratification and facilitate personalised rehabilitation and treatment planning.
Collapse
Affiliation(s)
- Bryce A Killen
- Human Movement Biomechanics Research Group, Department of Movement Science, KU Leuven, Belgium.
| | - Miel Willems
- Human Movement Biomechanics Research Group, Department of Movement Science, KU Leuven, Belgium.
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Science, KU Leuven, Belgium.
| |
Collapse
|
2
|
Wang J, Xu F, Zhang H, Wang B, Deng T, Zhou Z, Li K, Nie Y. Validation of full-length radiograph based musculoskeletal modeling method to estimate medial and lateral knee contact forces. Gait Posture 2024; 114:108-111. [PMID: 39317028 DOI: 10.1016/j.gaitpost.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Anatomical parameters of the pelvis, femur, and tibia derived from the full-length radiograph can be used to create a more accurate musculoskeletal model compared to marker-based linear scaling method. However, whether this model leads to more accurate estimations of medial knee contact force (MCF) and lateral knee contact force (LCF) than marker-based linear scaling method is still unknown. RESEARCH QUESTION This main purpose of this study was to determine whether musculoskeletal model generated from full-length radiograph improves the estimations of MCF and LCF. METHODS An open-source dataset including marker trajectories, ground reaction forces, in vivo knee contact forces, and full-length radiograph was used to evaluate the accuracy of full-length radiograph musculoskeletal modeling method. Subject-specific musculoskeletal models were created using anatomical parameters derived from the full-length radiograph or marker-based linear scaling methods. MCF and LCF were estimated using musculoskeletal simulations of normal walking trails. The accuracy of modeling methods was determined by comparing the estimated and in vivo measured MCF and LCF. RESULTS Compared to the marker-based linear scaling approach, the full-length radiograph musculoskeletal modeling method exhibited decreases of 38.3 % and 41.3 % in root mean square error for MCF and LCF respectively, as well as reductions of 50.0 % and 49.3 % in mean peak errors for MCF and LCF respectively. SIGNIFICANCE The full-length radiograph musculoskeletal modeling method provides a more accurate way to estimate MCF and LCF compared to the traditional maker-based linear scaling approach, which may contribute to understand the initiation, progression, and treatment of OA.
Collapse
Affiliation(s)
- Junqing Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; Department of Orthopedic Surgery and west China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning Province, China.
| | - Fashu Xu
- Department of Orthopedic Surgery and west China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Hui Zhang
- Department of Orthopedic Surgery and west China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Biao Wang
- Department of Orthopedic Surgery and west China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Tao Deng
- School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan Province, China.
| | - Zongke Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Kang Li
- Department of Orthopedic Surgery and west China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Cornish BM, Diamond LE, Saxby DJ, Xia Z, Pizzolato C. Real-Time Calibration-Free Musculotendon Kinematics for Neuromusculoskeletal Models. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3486-3495. [PMID: 39240743 DOI: 10.1109/tnsre.2024.3455262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Neuromusculoskeletal (NMS) models enable non-invasive estimation of clinically important internal biomechanics. A critical part of NMS modelling is the estimation of musculotendon kinematics, which comprise musculotendon unit lengths, moment arms, and lines of action. Musculotendon kinematics, which are partially dependent on joint angles, define the non-linear mapping of muscle forces to joint moments and contact forces. Currently, real-time computation of musculotendon kinematics requires creation of a per-individual surrogate model. The computational speed and accuracy of these surrogates degrade with increasing number of coordinates. We developed a feed-forward neural network that completely encodes musculotendon kinematics of a target model across a wide anthropometric range, enabling accurate real-time estimates of musculotendon kinematics without need for a priori creation of a per-individual surrogate model. Compared to reference, the neural network had median normalized errors ~0.1% for musculotendon lengths, <0.4% for moment arms, and <0.10° for line of action orientations. The neural network was employed within an electromyogram-informed NMS model to calculate hip contact forces, demonstrating little difference (normalized root mean square error 1.23±0.15 %) compared to using reference musculotendon kinematics. Finally, execution time was <0.04 ms per frame and constant for increasing number of model coordinates. Our approach to musculoskeletal kinematics may facilitate deployment of complex real-time NMS modelling in computer vision or wearable sensors applications to realize biomechanics monitoring, rehabilitation, and disease management outside the research laboratory.
Collapse
|
4
|
Koller W, Wallnöfer E, Holder J, Kranzl A, Mindler G, Baca A, Kainz H. ESMAC Best Paper Award 2023: Increased knee flexion in participants with cerebral palsy results in altered stresses at the distal femoral growth plate compared to a typically developing cohort. Gait Posture 2024; 113:158-166. [PMID: 38905850 DOI: 10.1016/j.gaitpost.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION Femoral deformities are highly prevalent in children with cerebral palsy (CP) and can have a severe impact on patients' gait abilities. While the mechanical stress regime within the distal femoral growth plate remains underexplored, understanding it is crucial given bone's adaptive response to mechanical stimuli. We quantified stresses at the distal femoral growth plate to deepen our understanding of the relationship between healthy and pathological gait patterns, internal loading, and femoral growth patterns. METHODS This study included three-dimensional motion capture data and magnetic resonance images of 13 typically developing children and twelve participants with cerebral palsy. Employing a multi-scale mechanobiological approach, integrating musculoskeletal simulations and subject-specific finite element analysis, we investigated the orientation of the distal femoral growth plate and the stresses within it. Limbs of participants with CP were grouped depending on their knee flexion kinematics during stance phase as this potentially changes the stresses induced by knee and patellofemoral joint contact forces. RESULTS Despite similar growth plate orientation across groups, significant differences were observed in the shape and distribution of growth values. Higher growth rates were noted in the anterior compartment in CP limbs with high knee flexion while CP limbs with normal knee flexion showed high similarity to the group of healthy participants. DISCUSSION Results indicate that the knee flexion angle during the stance phase is of high relevance for typical bone growth at the distal femur. The evaluated growth rates reveal plausible results, as long-term promoted growth in the anterior compartment leads to anterior bending of the femur which was confirmed for the group with high knee flexion through analyses of the femoral geometry. The framework for these multi-scale simulations has been made accessible on GitHub, empowering peers to conduct similar mechanobiological studies. Advancing our understanding of femoral bone development could ultimately support clinical decision-making.
Collapse
Affiliation(s)
- Willi Koller
- Department of Sport and Human Movement Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria; Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria.
| | - Elias Wallnöfer
- Department of Sport and Human Movement Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria; Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Jana Holder
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Andreas Kranzl
- Laboratory for Gait and Human Movements, Orthopaedic Hospital Speising, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Gabriel Mindler
- Department of Pediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria; Vienna Bone and Growth Center, Vienna, Austria
| | - Arnold Baca
- Department of Sport and Human Movement Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Hans Kainz
- Department of Sport and Human Movement Science, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria; Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Carman L, Besier TF, Rooks NB, Choisne J. An articulated shape model to predict paediatric lower limb bone geometry using sparse landmarks. J Biomech 2024; 172:112211. [PMID: 38955093 DOI: 10.1016/j.jbiomech.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Creating musculoskeletal models in a paediatric population currently involves either creating an image-based model from medical imaging data or a generic model using linear scaling. Image-based models provide a high level of accuracy but are time-consuming and costly to implement, on the other hand, linear scaling of an adult template musculoskeletal model is faster and common practice, but the output errors are significantly higher. An articulated shape model incorporates pose and shape to predict geometry for use in musculoskeletal models based on existing information from a population to provide both a fast and accurate method. From a population of 333 children aged 4-18 years old, we have developed an articulated shape model of paediatric lower limb bones to predict bone geometry from eight bone landmarks commonly used for motion capture. Bone surface root mean squared errors were found to be 2.63 ± 0.90 mm, 1.97 ± 0.61 mm, and 1.72 ± 0.51 mm for the pelvis, femur, and tibia/fibula, respectively. Linear scaling produced bone surface errors of 4.79 ± 1.39 mm, 4.38 ± 0.72 mm, and 4.39 ± 0.86 mm for the pelvis, femur, and tibia/fibula, respectively. Clinical bone measurement errors were low across all bones predicted using the articulated shape model, which outperformed linear scaling for all measurements. However, the model failed to accurately capture torsional measures (femoral anteversion and tibial torsion). Overall, the articulated shape model was shown to be a fast and accurate method to predict lower limb bone geometry in a paediatric population, superior to linear scaling.
Collapse
Affiliation(s)
- Laura Carman
- Auckland Bioengineering Institute, 70 Symonds Street, Level 8, The University of Auckland, Auckland, New Zealand.
| | - Thor F Besier
- Auckland Bioengineering Institute, 70 Symonds Street, Level 8, The University of Auckland, Auckland, New Zealand; Department of Engineering Science & Biomedical Engineering, 70 Symonds Street, Level 0, The University of Auckland, Auckland, New Zealand.
| | - Nynke B Rooks
- Auckland Bioengineering Institute, 70 Symonds Street, Level 8, The University of Auckland, Auckland, New Zealand; Formus Labs, 70 Symonds Street, Level 9, Auckland, New Zealand.
| | - Julie Choisne
- Auckland Bioengineering Institute, 70 Symonds Street, Level 8, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
Wang J, Li S, Sun Z, Lao Q, Shen B, Li K, Nie Y. Full-length radiograph based automatic musculoskeletal modeling using convolutional neural network. J Biomech 2024; 166:112046. [PMID: 38467079 DOI: 10.1016/j.jbiomech.2024.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Full-length radiographs contain information from which many anatomical parameters of the pelvis, femur, and tibia may be derived, but only a few anatomical parameters are used for musculoskeletal modeling. This study aimed to develop a fully automatic algorithm to extract anatomical parameters from full-length radiograph to generate a musculoskeletal model that is more accurate than linear scaled one. A U-Net convolutional neural network was trained to segment the pelvis, femur, and tibia from the full-length radiograph. Eight anatomic parameters (six for length and width, two for angles) were automatically extracted from the bone segmentation masks and used to generate the musculoskeletal model. Sørensen-Dice coefficient was used to quantify the consistency of automatic bone segmentation masks with manually segmented labels. Maximum distance error, root mean square (RMS) distance error and Jaccard index (JI) were used to evaluate the geometric accuracy of the automatically generated pelvis, femur and tibia models versus CT bone models. Mean Sørensen-Dice coefficients for the pelvis, femur and tibia 2D segmentation masks were 0.9898, 0.9822 and 0.9786, respectively. The algorithm-driven bone models were closer to the 3D CT bone models than the scaled generic models in geometry, with significantly lower maximum distance error (28.3 % average decrease from 24.35 mm) and RMS distance error (28.9 % average decrease from 9.55 mm) and higher JI (17.2 % average increase from 0.46) (P < 0.001). The algorithm-driven musculoskeletal modeling (107.15 ± 10.24 s) was faster than the manual process (870.07 ± 44.79 s) for the same full-length radiograph. This algorithm provides a fully automatic way to generate a musculoskeletal model from full-length radiograph that achieves an approximately 30 % reduction in distance errors, which could enable personalized musculoskeletal simulation based on full-length radiograph for large scale OA populations.
Collapse
Affiliation(s)
- Junqing Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Shiqi Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; College of Electrical Engineering, Sichuan University, Chengdu, Sichuan Province, China.
| | - Zitong Sun
- Sichuan University-Pittsburgh Institute (SCUPI), Sichuan University, Chengdu, Sichuan Province, China.
| | - Qicheng Lao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications (BUPT), Beijing, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Kang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
7
|
Kainz H, Koller W, Wallnöfer E, Bader TR, Mindler GT, Kranzl A. A framework based on subject-specific musculoskeletal models and Monte Carlo simulations to personalize muscle coordination retraining. Sci Rep 2024; 14:3567. [PMID: 38347085 PMCID: PMC10861532 DOI: 10.1038/s41598-024-53857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Excessive loads at lower limb joints can lead to pain and degenerative diseases. Altering joint loads with muscle coordination retraining might help to treat or prevent clinical symptoms in a non-invasive way. Knowing how much muscle coordination retraining can reduce joint loads and which muscles have the biggest impact on joint loads is crucial for personalized gait retraining. We introduced a simulation framework to quantify the potential of muscle coordination retraining to reduce joint loads for an individuum. Furthermore, the proposed framework enables to pinpoint muscles, which alterations have the highest likelihood to reduce joint loads. Simulations were performed based on three-dimensional motion capture data of five healthy adolescents (femoral torsion 10°-29°, tibial torsion 19°-38°) and five patients with idiopathic torsional deformities at the femur and/or tibia (femoral torsion 18°-52°, tibial torsion 3°-50°). For each participant, a musculoskeletal model was modified to match the femoral and tibial geometry obtained from magnetic resonance images. Each participant's model and the corresponding motion capture data were used as input for a Monte Carlo analysis to investigate how different muscle coordination strategies influence joint loads. OpenSim was used to run 10,000 simulations for each participant. Root-mean-square of muscle forces and peak joint contact forces were compared between simulations. Depending on the participant, altering muscle coordination led to a maximum reduction in hip, knee, patellofemoral and ankle joint loads between 5 and 18%, 4% and 45%, 16% and 36%, and 2% and 6%, respectively. In some but not all participants reducing joint loads at one joint increased joint loads at other joints. The required alteration in muscle forces to achieve a reduction in joint loads showed a large variability between participants. The potential of muscle coordination retraining to reduce joint loads depends on the person's musculoskeletal geometry and gait pattern and therefore showed a large variability between participants, which highlights the usefulness and importance of the proposed framework to personalize gait retraining.
Collapse
Affiliation(s)
- Hans Kainz
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6a (USZ II), 1150, Vienna, Austria.
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.
| | - Willi Koller
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6a (USZ II), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Elias Wallnöfer
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6a (USZ II), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Till R Bader
- Department of Radiology, Orthopaedic Hospital Speising, Vienna, Austria
| | - Gabriel T Mindler
- Department of Paediatric Orthopaedics and Foot Surgery, Orthopaedic Hospital Speising, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Andreas Kranzl
- Vienna Bone and Growth Center, Vienna, Austria
- Laboratory for Gait and Movement Analysis, Orthopaedic Hospital Speising, Vienna, Austria
| |
Collapse
|
8
|
Kainz H, Mindler GT, Kranzl A. Influence of femoral anteversion angle and neck-shaft angle on muscle forces and joint loading during walking. PLoS One 2023; 18:e0291458. [PMID: 37824447 PMCID: PMC10569567 DOI: 10.1371/journal.pone.0291458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
Femoral deformities, e.g. increased or decreased femoral anteversion (AVA) and neck-shaft angle (NSA), can lead to pathological gait patterns, altered joint loads, and degenerative joint diseases. The mechanism how femoral geometry influences muscle forces and joint load during walking is still not fully understood. The objective of our study was to investigate the influence of femoral AVA and NSA on muscle forces and joint loads during walking. We conducted a comprehensive musculoskeletal modelling study based on three-dimensional motion capture data of a healthy person with a typical gait pattern. We created 25 musculoskeletal models with a variety of NSA (93°-153°) and AVA (-12°-48°). For each model we calculated moment arms, muscle forces, muscle moments, co-contraction indices and joint loads using OpenSim. Multiple regression analyses were used to predict muscle activations, muscle moments, co-contraction indices, and joint contact forces based on the femoral geometry. We found a significant increase in co-contraction of hip and knee joint spanning muscles in models with increasing AVA and NSA, which led to a substantial increase in hip and knee joint contact forces. Decreased AVA and NSA had a minor impact on muscle and joint contact forces. Large AVA lead to increases in both knee and hip contact forces. Large NSA (153°) combined with large AVA (48°) led to increases in hip joint contact forces by five times body weight. Low NSA (108° and 93°) combined with large AVA (48°) led to two-fold increases in the second peak of the knee contact forces. Increased joint contact forces in models with increased AVA and NSA were linked to changes in hip muscle moment arms and compensatory increases in hip and knee muscle forces. Knowing the influence of femoral geometry on muscle forces and joint loads can help clinicians to improve treatment strategies in patients with femoral deformities.
Collapse
Affiliation(s)
- Hans Kainz
- Centre for Sport Science and University Sports, Department of Biomechanics, Kinesiology and Computer Science in Sport, Neuromechanics Research Group, University of Vienna, Vienna, Austria
| | - Gabriel T. Mindler
- Department of Pediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Andreas Kranzl
- Vienna Bone and Growth Center, Vienna, Austria
- Laboratory for Gait and Movement Analysis, Orthopaedic Hospital Speising, Vienna, Austria
| |
Collapse
|
9
|
Koller W, Baca A, Kainz H. The gait pattern and not the femoral morphology is the main contributor to asymmetric hip joint loading. PLoS One 2023; 18:e0291789. [PMID: 37751435 PMCID: PMC10522038 DOI: 10.1371/journal.pone.0291789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Gait asymmetry and skeletal deformities are common in many children with cerebral palsy (CP). Changes of the hip joint loading, i.e. hip joint contact force (HJCF), can lead to pathological femoral growth. A child's gait pattern and femoral morphology affect HJCFs. The twofold aim of this study was to (1) evaluate if the asymmetry in HJCFs is higher in children with CP compared to typically developing (TD) children and (2) identify if the bony morphology or the subject-specific gait pattern is the main contributor to asymmetric HJCFs. Magnetic resonance images (MRI) and three-dimensional gait analysis data of twelve children with CP and fifteen TD children were used to create subject-specific musculoskeletal models and calculate HJCF using OpenSim. Root-mean-square-differences between left and right HJCF magnitude and orientation were computed and compared between participant groups (CP versus TD). Additionally, the influence on HJCF asymmetries solely due to the femoral morphology and solely due to the gait pattern was quantified. Our findings demonstrate that the gait pattern is the main contributor to asymmetric HJCFs in CP and TD children. Children with CP have higher HJCF asymmetries which is probably the result of larger asymmetries in their gait pattern compared to TD children. The gained insights from our study highlight that clinical interventions should focus on normalizing the gait pattern and therefore the hip joint loading to avoid the development of femoral deformities.
Collapse
Affiliation(s)
- Willi Koller
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Arnold Baca
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Hans Kainz
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Wang K, Deng Z, Chen X, Shao J, Qiu L, Jiang C, Niu W. The Role of Multifidus in the Biomechanics of Lumbar Spine: A Musculoskeletal Modeling Study. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010067. [PMID: 36671639 PMCID: PMC9854514 DOI: 10.3390/bioengineering10010067] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The role of multifidus in the biomechanics of lumbar spine remained unclear. PURPOSE This study aimed to investigate the role of multifidus in the modeling of lumbar spine and the influence of asymmetric multifidus atrophy on the biomechanics of lumbar spine. METHODS This study considered five different multifidus conditions in the trunk musculoskeletal models: group 1 (with entire multifidus), group 2 (without multifidus), group 3 (multifidus with half of maximum isometric force), group 4 (asymmetric multifidus atrophy on L5/S1 level), and group 5 (asymmetric multifidus atrophy on L4/L5 level). In order to test how different multifidus situations would affect the lumbar spine, four trunk flexional angles (0°, 30°, 60°, and 90°) were simulated. The calculation of muscle activation and muscle force was done using static optimization function in OpenSim. Then, joint reaction forces of L5/S1 and L4/L5 levels were calculated and compared among the groups. RESULTS The models without multifidus had the highest normalized compressive forces on the L4/L5 level in trunk flexion tasks. In extreme cases produced by group 2 models, the normalized compressive forces on L4/L5 level were 444% (30° flexion), 568% (60° flexion), and 576% (90° flexion) of upper body weight, which were 1.82 times, 1.63 times, and 1.13 times as large as the values computed by the corresponding models in group 1. In 90° flexion, the success rate of simulation in group 2 was 49.6%, followed by group 3 (84.4%), group 4 (89.6%), group 5 (92.8%), and group 1 (92.8%). CONCLUSIONS The results demonstrate that incorporating multifidus in the musculoskeletal model is important for increasing the success rate of simulation and decreasing the incidence of overestimation of compressive load on the lumbar spine. Asymmetric multifidus atrophy has negligible effect on the lower lumbar spine in the trunk flexion posture. The results highlighted the fine-tuning ability of multifidus in equilibrating the loads on the lower back and the necessity of incorporating multifidus in trunk musculoskeletal modeling.
Collapse
Affiliation(s)
- Kuan Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhen Deng
- Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 201900, China
| | - Xinpeng Chen
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiang Shao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Lulu Qiu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Chenghua Jiang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Niu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
- Laboratory of Rehabilitation Engineering and Biomechanics, Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-021-65982856
| |
Collapse
|
11
|
Koller W, Gonçalves B, Baca A, Kainz H. Intra- and inter-subject variability of femoral growth plate stresses in typically developing children and children with cerebral palsy. Front Bioeng Biotechnol 2023; 11:1140527. [PMID: 36911204 PMCID: PMC9999378 DOI: 10.3389/fbioe.2023.1140527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Little is known about the influence of mechanical loading on growth plate stresses and femoral growth. A multi-scale workflow based on musculoskeletal simulations and mechanobiological finite element (FE) analysis can be used to estimate growth plate loading and femoral growth trends. Personalizing the model in this workflow is time-consuming and therefore previous studies included small sample sizes (N < 4) or generic finite element models. The aim of this study was to develop a semi-automated toolbox to perform this workflow and to quantify intra-subject variability in growth plate stresses in 13 typically developing (TD) children and 12 children with cerebral palsy (CP). Additionally, we investigated the influence of the musculoskeletal model and the chosen material properties on the simulation results. Intra-subject variability in growth plate stresses was higher in cerebral palsy than in typically developing children. The highest osteogenic index (OI) was observed in the posterior region in 62% of the TD femurs while in children with CP the lateral region was the most common (50%). A representative reference osteogenic index distribution heatmap generated from data of 26 TD children's femurs showed a ring shape with low values in the center region and high values at the border of the growth plate. Our simulation results can be used as reference values for further investigations. Furthermore, the code of the developed GP-Tool ("Growth Prediction-Tool") is freely available on GitHub (https://github.com/WilliKoller/GP-Tool) to enable peers to conduct mechanobiological growth studies with larger sample sizes to improve our understanding of femoral growth and to support clinical decision making in the near future.
Collapse
Affiliation(s)
- Willi Koller
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.,Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.,Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Basílio Gonçalves
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.,Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Arnold Baca
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Hans Kainz
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.,Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Alexander N, Brunner R, Cip J, Viehweger E, De Pieri E. Increased Femoral Anteversion Does Not Lead to Increased Joint Forces During Gait in a Cohort of Adolescent Patients. Front Bioeng Biotechnol 2022; 10:914990. [PMID: 35733525 PMCID: PMC9207384 DOI: 10.3389/fbioe.2022.914990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic complications were previously reported for patients with increased femoral anteversion. A more comprehensive analysis of the influence of increased femoral anteversion on joint loading in these patients is required to better understand the pathology and its clinical management. Therefore, the aim was to investigate lower-limb kinematics, joint moments and forces during gait in adolescent patients with increased, isolated femoral anteversion compared to typically developing controls. Secondly, relationships between the joint loads experienced by the patients and different morphological and kinematic features were investigated. Patients with increased femoral anteversion (n = 42, 12.8 ± 1.9 years, femoral anteversion: 39.6 ± 6.9°) were compared to typically developing controls (n = 9, 12.0 ± 3.0 years, femoral anteversion: 18.7 ± 4.1°). Hip and knee joint kinematics and kinetics were calculated using subject-specific musculoskeletal models. Differences between patients and controls in the investigated outcome variables (joint kinematics, moments, and forces) were evaluated through statistical parametric mapping with Hotelling T2 and t-tests (α = 0.05). Canonical correlation analyses (CCAs) and regression analyses were used to evaluate within the patients’ cohort the effect of different morphological and kinematic predictors on the outcome variables. Predicted compressive proximo-distal loads in both hip and knee joints were significantly reduced in patients compared to controls. A gait pattern characterized by increased knee flexion during terminal stance (KneeFlextSt) was significantly correlated with hip and knee forces, as well as with the resultant force exerted by the quadriceps on the patella. On the other hand, hip internal rotation and in-toeing, did not affect the loads in the joints. Based on the finding of the CCAs and linear regression analyses, patients were further divided into two subgroups based KneeFlextSt. Patients with excessive KneeFlextSt presented a significantly higher femoral anteversion than those with normal KneeFlextSt. Patients with excessive KneeFlextSt presented significantly larger quadriceps forces on the patella and a larger posteriorly-oriented shear force at the knee, compared to patients with normal KneeFlextSt, but both patients’ subgroups presented only limited differences in terms of joint loading compared to controls. This study showed that an altered femoral morphology does not necessarily lead to an increased risk of joint overloading, but instead patient-specific kinematics should be considered.
Collapse
Affiliation(s)
- Nathalie Alexander
- Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Department of Orthopaedics and Traumatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Reinald Brunner
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
- Dpartment of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Johannes Cip
- Department of Paediatric Orthopaedics, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Elke Viehweger
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
- Dpartment of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Enrico De Pieri
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Dpartment of Biomedical Engineering, University of Basel, Basel, Switzerland
- *Correspondence: Enrico De Pieri,
| |
Collapse
|
13
|
Uchida TK, Seth A. Conclusion or Illusion: Quantifying Uncertainty in Inverse Analyses From Marker-Based Motion Capture due to Errors in Marker Registration and Model Scaling. Front Bioeng Biotechnol 2022; 10:874725. [PMID: 35694232 PMCID: PMC9174465 DOI: 10.3389/fbioe.2022.874725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Estimating kinematics from optical motion capture with skin-mounted markers, referred to as an inverse kinematic (IK) calculation, is the most common experimental technique in human motion analysis. Kinematics are often used to diagnose movement disorders and plan treatment strategies. In many such applications, small differences in joint angles can be clinically significant. Kinematics are also used to estimate joint powers, muscle forces, and other quantities of interest that cannot typically be measured directly. Thus, the accuracy and reproducibility of IK calculations are critical. In this work, we isolate and quantify the uncertainty in joint angles, moments, and powers due to two sources of error during IK analyses: errors in the placement of markers on the model (marker registration) and errors in the dimensions of the model’s body segments (model scaling). We demonstrate that IK solutions are best presented as a distribution of equally probable trajectories when these sources of modeling uncertainty are considered. Notably, a substantial amount of uncertainty exists in the computed kinematics and kinetics even if low marker tracking errors are achieved. For example, considering only 2 cm of marker registration uncertainty, peak ankle plantarflexion angle varied by 15.9°, peak ankle plantarflexion moment varied by 26.6 N⋅m, and peak ankle power at push off varied by 75.9 W during healthy gait. This uncertainty can directly impact the classification of patient movements and the evaluation of training or device effectiveness, such as calculations of push-off power. We provide scripts in OpenSim so that others can reproduce our results and quantify the effect of modeling uncertainty in their own studies.
Collapse
Affiliation(s)
- Thomas K. Uchida
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Thomas K. Uchida,
| | - Ajay Seth
- Department of BioMechanical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
14
|
De Pieri E, Romkes J, Wyss C, Brunner R, Viehweger E. Altered Muscle Contributions are Required to Support the Stance Limb During Voluntary Toe-Walking. Front Bioeng Biotechnol 2022; 10:810560. [PMID: 35480978 PMCID: PMC9036482 DOI: 10.3389/fbioe.2022.810560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/02/2022] [Indexed: 01/02/2023] Open
Abstract
Toe-walking characterizes several neuromuscular conditions and is associated with a reduction in gait stability and efficiency, as well as in life quality. The optimal choice of treatment depends on a correct understanding of the underlying pathology and on the individual biomechanics of walking. The objective of this study was to describe gait deviations occurring in a cohort of healthy adult subjects when mimicking a unilateral toe-walking pattern compared to their normal heel-to-toe gait pattern. The focus was to characterize the functional adaptations of the major lower-limb muscles which are required in order to toe walk. Musculoskeletal modeling was used to estimate the required muscle contributions to the joint sagittal moments. The support moment, defined as the sum of the sagittal extensive moments at the ankle, knee, and hip joints, was used to evaluate the overall muscular effort necessary to maintain stance limb stability and prevent the collapse of the knee. Compared to a normal heel-to-toe gait pattern, toe-walking was characterized by significantly different lower-limb kinematics and kinetics. The altered kinetic demands at each joint translated into different necessary moment contributions from most muscles. In particular, an earlier and prolonged ankle plantarflexion contribution was required from the soleus and gastrocnemius during most of the stance phase. The hip extensors had to provide a higher extensive moment during loading response, while a significantly higher knee extension contribution from the vasti was necessary during mid-stance. Compensatory muscular activations are therefore functionally required at every joint level in order to toe walk. A higher support moment during toe-walking indicates an overall higher muscular effort necessary to maintain stance limb stability and prevent the collapse of the knee. Higher muscular demands during gait may lead to fatigue, pain, and reduced quality of life. Toe-walking is indeed associated with significantly larger muscle forces exerted by the quadriceps to the patella and prolonged force transmission through the Achilles tendon during stance phase. Optimal treatment options should therefore account for muscular demands and potential overloads associated with specific compensatory mechanisms.
Collapse
Affiliation(s)
- Enrico De Pieri
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- *Correspondence: Enrico De Pieri,
| | - Jacqueline Romkes
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Christian Wyss
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Reinald Brunner
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
| | - Elke Viehweger
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
| |
Collapse
|
15
|
Hayford CF, Pratt E, Cashman JP, Evans OG, Mazzà C. Effectiveness of Global Optimisation and Direct Kinematics in Predicting Surgical Outcome in Children with Cerebral Palsy. Life (Basel) 2021; 11:1306. [PMID: 34947837 PMCID: PMC8705891 DOI: 10.3390/life11121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Multibody optimisation approaches have not seen much use in routine clinical applications despite evidence of improvements in modelling through a reduction in soft tissue artifacts compared to the standard gait analysis technique of direct kinematics. To inform clinical use, this study investigated the consistency with which both approaches predicted post-surgical outcomes, using changes in Gait Profile Score (GPS) when compared to a clinical assessment of outcome that did not include the 3D gait data. Retrospective three-dimensional motion capture data were utilised from 34 typically developing children and 26 children with cerebral palsy who underwent femoral derotation osteotomies as part of Single Event Multi-Level Surgeries. Results indicated that while, as expected, the GPS estimated from the two methods were numerically different, they were strongly correlated (Spearman's ρ = 0.93), and no significant differences were observed between their estimations of change in GPS after surgery. The two scores equivalently classified a worsening or improvement in the gait quality in 93% of the cases. When compared with the clinical classification of responders versus non-responders to the intervention, an equivalent performance was found for the two approaches, with 27/41 and 28/41 cases in agreement with the clinical judgement for multibody optimisation and direct kinematics, respectively. With this equivalent performance to the direct kinematics approach and the benefit of being less sensitive to skin artefact and allowing additional analysis such as estimation of musculotendon lengths and joint contact forces, multibody optimisation has the potential to improve the clinical decision-making process in children with cerebral palsy.
Collapse
Affiliation(s)
- Claude Fiifi Hayford
- Department of Mechanical Engineering, INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S10 2TN, UK;
| | - Emma Pratt
- Gait Analysis Laboratory, Sheffield Children’s Hospital, Sheffield S10 5DP, UK; (E.P.); (J.P.C.); (O.G.E.)
| | - John P. Cashman
- Gait Analysis Laboratory, Sheffield Children’s Hospital, Sheffield S10 5DP, UK; (E.P.); (J.P.C.); (O.G.E.)
| | - Owain G. Evans
- Gait Analysis Laboratory, Sheffield Children’s Hospital, Sheffield S10 5DP, UK; (E.P.); (J.P.C.); (O.G.E.)
| | - Claudia Mazzà
- Department of Mechanical Engineering, INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield S10 2TN, UK;
| |
Collapse
|