1
|
Tam KT, Baar K. Using Load to Improve Tendon/Ligament Tissue Engineering and Develop Novel Treatments for Tendinopathy. Matrix Biol 2024:S0945-053X(24)00143-4. [PMID: 39645093 DOI: 10.1016/j.matbio.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Tendon and ligament injuries are highly prevalent but heal poorly, even with proper care. Restoration of native tissue function is complicated by the fact that these tissues vary anatomically in terms of their mechanical properties, composition, and structure. These differences develop as adaptations to diverse mechanical demands; however, pathology may alter the loads placed on the tissue. Musculoskeletal loads can be generally categorized into tension, compression, and shear. Each of these regulate distinct molecular pathways that are involved in tissue remodeling, including many of the canonical tenogenic genes. In this review, we provide a perspective on the stage-specific regulation of mechanically sensitive pathways during development and maturation of tendon and ligament tissue, including scleraxis, mohawk, and others. Furthermore, we discuss structural features of healing and diseased tendon that may contribute to aberrant loading profiles, and how the associated disturbance in molecular signaling may contribute to incomplete healing or the formation of degenerative phenotypes. The perspectives provided here draw from studies spanning in vitro, animal, and human experiments of healthy and diseased tendon to propose a more targeted approach to advance rehabilitation, orthobiologics, and tissue engineering.
Collapse
Affiliation(s)
- Kenneth T Tam
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA 95616; Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616
| | - Keith Baar
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA 95616; Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616; VA Northern California Health Care System, Mather, CA 95655, USA..
| |
Collapse
|
2
|
Leahy TP, Chenna SS, Soslowsky LJ, Dyment NA. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development. FASEB J 2024; 38:e70050. [PMID: 39259535 PMCID: PMC11522781 DOI: 10.1096/fj.202400151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Srish S. Chenna
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Yuan Z, Zhu X, Dai Y, Shi L, Feng Z, Li Z, Diao N, Guo A, Yin H, Ma L. Analysis of differentially expressed genes in torn rotator cuff tendon tissues in diabetic patients through RNA-sequencing. BMC Musculoskelet Disord 2024; 25:31. [PMID: 38172847 PMCID: PMC10763306 DOI: 10.1186/s12891-023-07149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Rotator cuff tears (RCT) is a common musculoskeletal disorder in the shoulder which cause pain and functional disability. Diabetes mellitus (DM) is characterized by impaired ability of producing or responding to insulin and has been reported to act as a risk factor of the progression of rotator cuff tendinopathy and tear. Long non-coding RNAs (lncRNAs) are involved in the development of various diseases, but little is known about their potential roles involved in RCT of diabetic patients. METHODS RNA-Sequencing (RNA-Seq) was used in this study to profile differentially expressed lncRNAs and mRNAs in RCT samples between 3 diabetic and 3 nondiabetic patients. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were performed to annotate the function of the differentially expressed genes (DEGs). LncRNA-mRNA co-expression network and competing endogenous RNA (ceRNA) network were constructed to elucidate the potential molecular mechanisms of DM affecting RCT. RESULTS In total, 505 lncRNAs and 388 mRNAs were detected to be differentially expressed in RCT samples between diabetic and nondiabetic patients. GO functional analysis indicated that related lncRNAs and mRNAs were involved in metabolic process, immune system process and others. KEGG pathway analysis indicated that related mRNAs were involved in ferroptosis, PI3K-Akt signaling pathway, Wnt signaling pathway, JAK-STAT signaling pathway and IL-17 signaling pathway and others. LncRNA-mRNA co-expression network was constructed, and ceRNA network showed the interaction of differentially expressed RNAs, comprising 5 lncRNAs, 2 mRNAs, and 142 miRNAs. TF regulation analysis revealed that STAT affected the progression of RCT by regulating the apoptosis pathway in diabetic patients. CONCLUSIONS We preliminarily dissected the differential expression profile of lncRNAs and mRNAs in torn rotator cuff tendon between diabetic and nondiabetic patients. And the bioinformatic analysis suggested some important RNAs and signaling pathways regarding inflammation and apoptosis were involved in diabetic RCT. Our findings offer a new perspective on the association between DM and progression of RCT.
Collapse
Affiliation(s)
- Ziyang Yuan
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Xu Zhu
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
- Department of Orthopaedics, Beijing Lu He Hospital, Capital Medical University, Beijing, 101149, China
| | - Yike Dai
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Lin Shi
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ziyang Feng
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhiyao Li
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Naicheng Diao
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China
| | - Ai Guo
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Heyong Yin
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lifeng Ma
- Department of Orthopaedics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|