1
|
Ripic Z, Letter M, Schoenwether B, Kaplan LD, Baraga MG, Costello Ii JP, Eskenazi J, Dennison M, Best TM, Signorile JF, Eltoukhy M. A hop testing alternative for functional performance following anterior cruciate ligament reconstruction. PLoS One 2024; 19:e0309003. [PMID: 39150940 PMCID: PMC11329148 DOI: 10.1371/journal.pone.0309003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/04/2024] [Indexed: 08/18/2024] Open
Abstract
The purpose of this work was to provide a simple method to determine reactive strength during the 6-meter timed hop test (6mTH) and evaluate its association with isokinetic peak torque in patients following anterior cruciate ligament reconstruction (ACLR). Twenty-nine ACLR patients who were at least four months from surgery were included in this analysis. Participants were brought into the laboratory on one occasion to complete functional testing. Quadriceps and hamstring isokinetic testing was completed bilaterally at 60, 180, and 300 deg∙s-1, using extension peak torque from each speed as the outcome measure. The 6mTH was completed bilaterally using a marker-based motion capture system, and reactive strength ratio (RSR) was calculated from the vertical velocity of the pelvis during the test. An adjustment in RSR was made using the velocity of the 6mTH test to account for different strategies employed across participants. Repeated measures correlations were used to determine associations among isokinetic and hop testing variables. A two-way mixed analysis of variance was used to determine differences in isokinetic and hop testing variables between operated and non-operated legs and across male and female participants. Moderate positive associations were found between RSR (and adjusted RSR) and isokinetic peak torque at all speeds (r = .527 to .577). Mean comparisons showed significant main effects for leg and sex. Patients showed significant deficits in their operated versus non-operated legs in all isokinetic and hop testing variables, yet only isokinetic peak torque and timed hop time showed significant differences across male and female groups. Preliminary results are promising but further development is needed to validate other accessible technologies available to calculate reactive strength during functional testing after ACLR. Pending these developments, the effects of movement strategies, demographics, and levels of participation on RSR can then be explored to translate this simple method to clinical environments.
Collapse
Affiliation(s)
- Zachary Ripic
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, United States of America
- Department of Orthopaedics, University of Miami Health System - Sports Medicine Institute, Coral Gables, FL, United States of America
| | - Michael Letter
- Department of Orthopaedics, University of Miami Health System - Sports Medicine Institute, Coral Gables, FL, United States of America
| | - Brandon Schoenwether
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, United States of America
| | - Lee D Kaplan
- Department of Orthopaedics, University of Miami Health System - Sports Medicine Institute, Coral Gables, FL, United States of America
| | - Michael G Baraga
- Department of Orthopaedics, University of Miami Health System - Sports Medicine Institute, Coral Gables, FL, United States of America
| | - Joseph P Costello Ii
- Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Jordan Eskenazi
- Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Molly Dennison
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, United States of America
| | - Thomas M Best
- Department of Orthopaedics, University of Miami Health System - Sports Medicine Institute, Coral Gables, FL, United States of America
| | - Joseph F Signorile
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, United States of America
| | - Moataz Eltoukhy
- Department of Kinesiology and Sport Sciences, University of Miami, Coral Gables, FL, United States of America
- Department of Industrial and Systems Engineering, University of Miami, Coral Gables, FL, United States of America
- Department of Physical Therapy, University of Miami Miller School of Medicine, Miami, FL, United States of America
| |
Collapse
|
2
|
Scataglini S, Abts E, Van Bocxlaer C, Van den Bussche M, Meletani S, Truijen S. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3686. [PMID: 38894476 PMCID: PMC11175331 DOI: 10.3390/s24113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
(1) Background: Marker-based 3D motion capture systems (MBS) are considered the gold standard in gait analysis. However, they have limitations for which markerless camera-based 3D motion capture systems (MCBS) could provide a solution. The aim of this systematic review and meta-analysis is to compare the accuracy, validity, and reliability of MCBS and MBS. (2) Methods: A total of 2047 papers were systematically searched according to PRISMA guidelines on 7 February 2024, in two different databases: Pubmed (1339) and WoS (708). The COSMIN-tool and EBRO guidelines were used to assess risk of bias and level of evidence. (3) Results: After full text screening, 22 papers were included. Spatiotemporal parameters showed overall good to excellent accuracy, validity, and reliability. For kinematic variables, hip and knee showed moderate to excellent agreement between the systems, while for the ankle joint, poor concurrent validity and reliability were measured. The accuracy and concurrent validity of walking speed were considered excellent in all cases, with only a small bias. The meta-analysis of the inter-rater reliability and concurrent validity of walking speed, step time, and step length resulted in a good-to-excellent intraclass correlation coefficient (ICC) (0.81; 0.98). (4) Discussion and conclusions: MCBS are comparable in terms of accuracy, concurrent validity, and reliability to MBS in spatiotemporal parameters. Additionally, kinematic parameters for hip and knee in the sagittal plane are considered most valid and reliable but lack valid and accurate measurement outcomes in transverse and frontal planes. Customization and standardization of methodological procedures are necessary for future research to adequately compare protocols in clinical settings, with more attention to patient populations.
Collapse
Affiliation(s)
- Sofia Scataglini
- 4D4ALL Laboratory, Department of Rehabilitation Sciences and Physiotherapy, Center for Health and Technology (CHaT), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerpen, Belgium; (E.A.); (C.V.B.); (M.V.d.B.); (S.M.); (S.T.)
| | | | | | | | | | | |
Collapse
|
3
|
Torvinen P, Ruotsalainen KS, Zhao S, Cronin N, Ohtonen O, Linnamo V. Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill. Bioengineering (Basel) 2024; 11:136. [PMID: 38391622 PMCID: PMC10886413 DOI: 10.3390/bioengineering11020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we developed a deep learning-based 3D markerless motion capture system for skate skiing on a treadmill and evaluated its accuracy against marker-based motion capture during G1 and G3 skating techniques. Participants performed roller skiing trials on a skiing treadmill. Trials were recorded with two synchronized video cameras (100 Hz). We then trained a custom model using DeepLabCut, and the skiing movements were analyzed using both DeepLabCut-based markerless motion capture and marker-based motion capture systems. We statistically compared joint centers and joint vector angles between the methods. The results demonstrated a high level of agreement for joint vector angles, with mean differences ranging from -2.47° to 3.69°. For joint center positions and toe placements, mean differences ranged from 24.0 to 40.8 mm. This level of accuracy suggests that our markerless approach could be useful as a skiing coaching tool. The method presents interesting opportunities for capturing and extracting value from large amounts of data without the need for markers attached to the skier and expensive cameras.
Collapse
Affiliation(s)
- Petra Torvinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 88610 Jyväskylä, Finland
| | - Keijo S Ruotsalainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 88610 Jyväskylä, Finland
| | - Shuang Zhao
- Faculty of Sport and Health Sciences, University of Jyväskylä, 88610 Jyväskylä, Finland
| | - Neil Cronin
- Faculty of Sport and Health Sciences, University of Jyväskylä, 88610 Jyväskylä, Finland
| | - Olli Ohtonen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 88610 Jyväskylä, Finland
| | - Vesa Linnamo
- Faculty of Sport and Health Sciences, University of Jyväskylä, 88610 Jyväskylä, Finland
| |
Collapse
|