1
|
Jin Y, Zhang F, Ma R, Xing J, Wang M, Sun Y, Zhang G. Single-cell RNA sequencing unveils dynamic transcriptional profiles during the process of donkey spermatogenesis and maturation. Genomics 2024; 117:110974. [PMID: 39694081 DOI: 10.1016/j.ygeno.2024.110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION With the increasing demand for donkey production, there has been a growing focus on the breeding of donkeys. However, our current understanding of the mechanisms underlying spermatogenesis and maturation in donkeys during reproduction remains limited. OBJECTIVES This study is to provide a comprehensive single-cell landscape analysis of spermatogenesis and maturation in donkeys. METHODS In this study, we employed single-cell RNA sequencing to investigate cell composition, gene expression patterns, and regulatory roles during spermatogenesis and maturation in donkeys. RESULTS The expression patterns of CDK1, CETN3, and UBE2J1 were found to be indicative of specific germ cells during donkey spermatogenesis. Additionally, the DEFB121, ELSPBP1, and NPC2 genes were specifically identified in the principal cells of the donkey epididymis. CONCLUSIONS We performed single-cell RNA sequencing to analyze the cellular composition and spatial distribution of donkey testis and epididymis, thereby generating comprehensive transcriptional atlases at the single-cell resolution.
Collapse
Affiliation(s)
- Yadan Jin
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fangdi Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Ruixue Ma
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jingya Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Min Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Guoliang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong 266109, China.
| |
Collapse
|
2
|
Xu AP, Xu LB, Smith ER, Fleishman JS, Chen ZS, Xu XX. Cancer nuclear envelope rupture and repair in taxane resistance. MEDICAL REVIEW (2021) 2024; 4:522-530. [PMID: 39664077 PMCID: PMC11629310 DOI: 10.1515/mr-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 12/13/2024]
Abstract
Taxanes, including paclitaxel, docetaxel, and cabazitaxel, are key agents in cancer treatment, often used as front-line chemotherapy drugs in combination with other agent(s) (commonly carboplatin) and as second-line treatments alone. Generally, taxanes are highly effective, but drug resistance unavoidably develops following repeated treatment. Taxanes work by binding to and stabilizing microtubules, leading to mitotic arrest, mitotic catastrophe, and micronucleation. The long-recognized mechanisms of drug resistance generally can be classified into three categories: drug efflux, microtubule polymerization, and apoptotic pathway. A recent new addition to this list is a mechanism related to the nuclear envelope, as cancer cells undergo micronucleation and nuclear membrane rupture when treated with taxanes. All these mechanisms may operate simultaneously as taxane resistance is multi-factorial. Here, we review the cell biology understanding of nuclear envelope breaking in production of micronucleation, and nuclear membrane rupture and repair, and propose that these processes are involved in taxane resistance.
Collapse
Affiliation(s)
| | | | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua S. Fleishman
- College of Pharmacy and Health Sciences, St. John’s University, Queens New York, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens New York, USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Fishburn AT, Florio CJ, Lopez NJ, Link NL, Shah PS. Molecular functions of ANKLE2 and its implications in human disease. Dis Model Mech 2024; 17:dmm050554. [PMID: 38691001 PMCID: PMC11103583 DOI: 10.1242/dmm.050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Ankyrin repeat and LEM domain-containing 2 (ANKLE2) is a scaffolding protein with established roles in cell division and development, the dysfunction of which is increasingly implicated in human disease. ANKLE2 regulates nuclear envelope disassembly at the onset of mitosis and its reassembly after chromosome segregation. ANKLE2 dysfunction is associated with abnormal nuclear morphology and cell division. It regulates the nuclear envelope by mediating protein-protein interactions with barrier to autointegration factor (BANF1; also known as BAF) and with the kinase and phosphatase that modulate the phosphorylation state of BAF. In brain development, ANKLE2 is crucial for proper asymmetric division of neural progenitor cells. In humans, pathogenic loss-of-function mutations in ANKLE2 are associated with primary congenital microcephaly, a condition in which the brain is not properly developed at birth. ANKLE2 is also linked to other disease pathologies, including congenital Zika syndrome, cancer and tauopathy. Here, we review the molecular roles of ANKLE2 and the recent literature on human diseases caused by its dysfunction.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nick J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nichole L. Link
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
4
|
Misra G, Rajawat J, Pal R, Smith JC, Kumar A. Targeted inhibition of MASTL kinase activity induces apoptosis in breast cancer. Life Sci 2023; 334:122250. [PMID: 37931742 DOI: 10.1016/j.lfs.2023.122250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Microtubule-associated serine/threonine kinase-like (MASTL) (or Greatwall kinase (GWL)) is an important cell cycle regulating kinase that regulates the G2-M transition. Uncontrolled MASTL activity is implicated in breast cancer progression. To date, very few inhibitors have been reported against this protein. Here, structure-based computational modeling indicates that the natural product flavopiridol (FLV) binds strongly to MASTL and these results are validated using molecular dynamics simulation studies. An in vitro kinase assay reveals an EC50 (effective concentration) value of FLV to be 82.1 nM and a better IC50 compared to the positive reference compound, staurosporine. FLV is found to inhibit MASTL kinase activity, arresting the cell growth in the G1 phase and inducing apoptosis in breast cancer cells. Consistent with these results differential gene expression obtained using RNA sequencing studies, and validated by RT PCR and immunoblot analysis, indicate that MASTL inhibition induces cell cycle arrest and apoptotic-related genes. Furthermore, metastasis- and inflammation-related genes are downregulated. Thus, the deregulation of MASTL signaling pathways on targeted inhibition of its kinase activity is revealed. This study lays a strong foundation for investigating FLV as a lead compound in breast cancer therapeutics.
Collapse
Affiliation(s)
- Gauri Misra
- National Institute of Biologicals (Ministry of Health and Family Welfare, Government of India), Noida 201309, India.
| | - Jyotika Rajawat
- Institute of Advanced Molecular Genetics & Infectious Diseases, ONGC, Centre for Advanced Studies, University of Lucknow, Lucknow 226 007, UP, India
| | - Rajesh Pal
- Precision Sarcoma Research Group, German Cancer Research Centre (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jeremy C Smith
- Oak Ridge National Laboratory, Biosciences Division, UT/ORNL Center for Molecular Biophysics, Oak Ridge, TN, USA; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
5
|
Serpico AF, Pisauro C, Grieco D. On the assembly of the mitotic spindle, bistability and hysteresis. Cell Mol Life Sci 2023; 80:83. [PMID: 36890394 PMCID: PMC9995516 DOI: 10.1007/s00018-023-04727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
During cell division, the transition from interphase to mitosis is dictated by activation of the cyclin B-cdk1 (Cdk1) complex, master mitotic kinase. During interphase, Cdk1 accumulates in an inactive state (pre-Cdk1). When Cdk1 overcomes a certain threshold of activity upon initial activation of pre-Cdk1, then the stockpiled pre-Cdk1 is rapidly converted into overshooting active Cdk1, and mitosis is established irreversibly in a switch-like fashion. This is granted by positive Cdk1 activation loops and the concomitant inactivation of Cdk1 counteracting phosphatases, empowering Cdk1 activity and favoring the Cdk1-dependent phosphorylations that are required to establish mitosis. These circuitries prevent backtracking and ensure unidirectionality so that interphase and mitosis are considered bistable states. Mitosis also shows hysteresis, meaning that the levels of Cdk1 activity needed to establish mitosis are higher than those required to maintain it; therefore, once in mitosis cells can tolerate moderate drops in Cdk1 activity without exiting mitosis. Whether these features have other functional implications in addition to the general action of preventing backtracking is unknown. Here, we contextualize these concepts in the view of recent evidence indicating that loss of activity of small and compartmentalized amounts of Cdk1 within mitosis is necessary to assemble the mitotic spindle, the structure required to segregate replicated chromosomes. We further propose that, in addition to prevent backtracking, the stability and hysteresis properties of mitosis are also essential to move forward in mitosis by allowing cells to bear small, localized, drops in Cdk1 activity that are necessary to build the mitotic spindle.
Collapse
Affiliation(s)
| | | | - Domenico Grieco
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy. .,DMMBM, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Lee IG, Lee BJ. Aurora Kinase A Regulation by Cysteine Oxidative Modification. Antioxidants (Basel) 2023; 12:antiox12020531. [PMID: 36830089 PMCID: PMC9952272 DOI: 10.3390/antiox12020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Aurora kinase A (AURKA), which is a member of serine/threonine kinase family, plays a critical role in regulating mitosis. AURKA has drawn much attention as its dysregulation is critically associated with various cancers, leading to the development of AURKA inhibitors, a new class of anticancer drugs. As the spatiotemporal activity of AURKA critically depends on diverse intra- and inter-molecular factors, including its interaction with various protein cofactors and post-translational modifications, each of these pathways should be exploited for the development of a novel class of AURKA inhibitors other than ATP-competitive inhibitors. Several lines of evidence have recently shown that redox-active molecules can modify the cysteine residues located on the kinase domain of AURKA, thereby regulating its activity. In this review, we present the current understanding of how oxidative modifications of cysteine residues of AURKA, induced by redox-active molecules, structurally and functionally regulate AURKA and discuss their implications in the discovery of novel AURKA inhibitors.
Collapse
Affiliation(s)
- In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence:
| |
Collapse
|
7
|
Smith ER, Wang JQ, Yang DH, Xu XX. Paclitaxel Resistance Related to Nuclear Envelope Structural SturdinessRunning Title: Lamin A/C Expression and Paclitaxel Resistance. Drug Resist Updat 2022; 65:100881. [DOI: 10.1016/j.drup.2022.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
|
8
|
Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy. Mutat Res 2022; 824:111776. [PMID: 35247630 DOI: 10.1016/j.mrfmmm.2022.111776] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Mitosis is the process of cell division and is regulated by checkpoints in the cell cycle. G1-S, S, and G2-M are the three main checkpoints that prevent initiation of the next phase of the cell cycle phase until previous phase has completed. DNA damage leads to activation of the G2-M checkpoint, which can trigger a downstream DNA damage response (DDR) pathway to induce cell cycle arrest while the damage is repaired. If the DNA damage cannot be repaired, the replication stress response (RSR) pathway finally leads to cell death by apoptosis, in this case called mitotic catastrophe. Many cancer treatments (chemotherapy and radiotherapy) cause DNA damages based on SSBs (single strand breaks) or DSBs (double strand breaks), which cause cell death through mitotic catastrophe. However, damaged cells can activate WEE1 kinase (as a part of the DDR and RSR pathways), which prevents apoptosis and cell death by inducing cell cycle arrest at G2 phase. Therefore, inhibition of WEE1 kinase could sensitize cancer cells to chemotherapeutic drugs. This review focuses on the role of WEE1 kinase (as a biological macromolecule which has a molecular mass of 96 kDa) in the cell cycle, and its interactions with other regulatory pathways. In addition, we discuss the potential of WEE1 inhibition as a new therapeutic approach in the treatment of various cancers, such as melanoma, breast cancer, pancreatic cancer, cervical cancer, etc.
Collapse
|
9
|
Compartmentalized control of Cdk1 drives mitotic spindle assembly. Cell Rep 2022; 38:110305. [DOI: 10.1016/j.celrep.2022.110305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/14/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
|
10
|
Galarreta A, Valledor P, Ubieto‐Capella P, Lafarga V, Zarzuela E, Muñoz J, Malumbres M, Lecona E, Fernandez‐Capetillo O. USP7 limits CDK1 activity throughout the cell cycle. EMBO J 2021; 40:e99692. [PMID: 33856059 PMCID: PMC8167359 DOI: 10.15252/embj.201899692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53-independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.
Collapse
Affiliation(s)
- Antonio Galarreta
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Pablo Valledor
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Patricia Ubieto‐Capella
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Present address:
DNA Replication GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Vanesa Lafarga
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Eduardo Zarzuela
- Proteomics UnitSpanish National Cancer Research Centre (CNIO) and ProteoRed‐ISCIIIMadridSpain
| | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Centre (CNIO) and ProteoRed‐ISCIIIMadridSpain
| | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Emilio Lecona
- Chromatin, Cancer and the Ubiquitin System labCentre for Molecular Biology Severo Ochoa (CBMSO)MadridSpain
| | - Oscar Fernandez‐Capetillo
- Genomic Instability GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Science for Life LaboratoryDivision of Genome BiologyDepartment of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| |
Collapse
|
11
|
Yamashita K, Tamura S, Honsho M, Yada H, Yagita Y, Kosako H, Fujiki Y. Mitotic phosphorylation of Pex14p regulates peroxisomal import machinery. J Cell Biol 2021; 219:152047. [PMID: 32854114 PMCID: PMC7659713 DOI: 10.1083/jcb.202001003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 01/27/2023] Open
Abstract
Peroxisomal matrix proteins are imported into peroxisomes via membrane-bound docking/translocation machinery. One central component of this machinery is Pex14p, a peroxisomal membrane protein involved in the docking of Pex5p, the receptor for peroxisome targeting signal type 1 (PTS1). Studies in several yeast species have shown that Pex14p is phosphorylated in vivo, whereas no function has been assigned to Pex14p phosphorylation in yeast and mammalian cells. Here, we investigated peroxisomal protein import and its dynamics in mitotic mammalian cells. In mitotically arrested cells, Pex14p is phosphorylated at Ser-232, resulting in a lower import efficiency of catalase, but not the majority of proteins including canonical PTS1 proteins. Conformational change induced by the mitotic phosphorylation of Pex14p more likely increases homomeric interacting affinity and suppresses topological change of its N-terminal part, thereby giving rise to the retardation of Pex5p export in mitotic cells. Taken together, these data show that mitotic phosphorylation of Pex14p and consequent suppression of catalase import are a mechanism of protecting DNA upon nuclear envelope breakdown at mitosis.
Collapse
Affiliation(s)
- Koichiro Yamashita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | | | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| | - Hiroto Yada
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yagita
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Institute of Rheological Functions of Food, Fukuoka, Japan
| |
Collapse
|
12
|
Abstract
The cell cycle is the sequence of events through which a cell duplicates its genome, grows, and divides. Key cell cycle transitions are driven by oscillators comprising of protein kinases and their regulators. Different cell cycle oscillators are inextricably linked to ensure orderly activation of oscillators. A recurring theme in their regulation is the abundance of autoamplifying loops that ensure switch-like and unidirectional cell cycle transitions. The periodicity of many cell cycle oscillators is choreographed by inherent mechanisms that promote automatic inactivation, often involving dephosphorylation and ubiquitin-mediated protein degradation. These inhibitory signals are subsequently suppressed to enable the next cell cycle to occur. Although the activation and inactivation of cell cycle oscillators are in essence autonomous during the unperturbed cell cycle, a number of checkpoint mechanisms are able to halt the cell cycle until preconditions or defects are addressed. Together, these mechanisms orchestrate orderly progression of the cell cycle to produce more cells and to safeguard genome stability.
Collapse
|
13
|
Rivard RS, Morris JM, Youngman MJ. The PP2A/4/6 subfamily of phosphoprotein phosphatases regulates DAF-16 and confers resistance to environmental stress in postreproductive adult C. elegans. PLoS One 2020; 15:e0229812. [PMID: 33315870 PMCID: PMC7735605 DOI: 10.1371/journal.pone.0229812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022] Open
Abstract
Insulin and insulin-like growth factors are longevity determinants that negatively regulate Forkhead box class O (FoxO) transcription factors. In C. elegans mutations that constitutively activate DAF-16, the ortholog of mammalian FoxO3a, extend lifespan by two-fold. While environmental insults induce DAF-16 activity in younger animals, it also becomes activated in an age-dependent manner in the absence of stress, modulating gene expression well into late adulthood. The mechanism by which DAF-16 activity is regulated during aging has not been defined. Since phosphorylation of DAF-16 generally leads to its inhibition, we asked whether phosphatases might be necessary for its increased transcriptional activity in adult C. elegans. We focused on the PP2A/4/6 subfamily of phosphoprotein phosphatases, members of which had been implicated to regulate DAF-16 under low insulin signaling conditions but had not been investigated during aging in wildtype animals. Using reverse genetics, we functionally characterized all C. elegans orthologs of human catalytic, regulatory, and scaffolding subunits of PP2A/4/6 holoenzymes in postreproductive adults. We found that PP2A complex constituents PAA-1 and PPTR-1 regulate DAF-16 transcriptional activity during aging and that they cooperate with the catalytic subunit LET-92 to protect adult animals from ultraviolet radiation. PP4 complex members PPH-4.1/4.2, and SMK-1 also appear to regulate DAF-16 in an age-dependent manner, and together with PPFR-2 they contribute to innate immunity. Interestingly, SUR-6 but no other subunit of the PP2A complex was necessary for the survival of pathogen-infected animals. Finally, we found that PP6 complex constituents PPH-6 and SAPS-1 contribute to host defense during aging, apparently without affecting DAF-16 transcriptional activity. Our studies indicate that a set of PP2A/4/6 complexes protect adult C. elegans from environmental stress, thus preserving healthspan. Therefore, along with their functions in cell division and development, the PP2A/4/6 phosphatases also appear to play critical roles later in life.
Collapse
Affiliation(s)
- Rebecca S. Rivard
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Julia M. Morris
- Department of Biology, Villanova University, Villanova, PA, United States of America
| | - Matthew J. Youngman
- Department of Biology, Villanova University, Villanova, PA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Goguet-Rubio P, Amin P, Awal S, Vigneron S, Charrasse S, Mechali F, Labbé JC, Lorca T, Castro A. PP2A-B55 Holoenzyme Regulation and Cancer. Biomolecules 2020; 10:biom10111586. [PMID: 33266510 PMCID: PMC7700614 DOI: 10.3390/biom10111586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023] Open
Abstract
Protein phosphorylation is a post-translational modification essential for the control of the activity of most enzymes in the cell. This protein modification results from a fine-tuned balance between kinases and phosphatases. PP2A is one of the major serine/threonine phosphatases that is involved in the control of a myriad of different signaling cascades. This enzyme, often misregulated in cancer, is considered a tumor suppressor. In this review, we will focus on PP2A-B55, a particular holoenzyme of the family of the PP2A phosphatases whose specific role in cancer development and progression has only recently been highlighted. The discovery of the Greatwall (Gwl)/Arpp19-ENSA cascade, a new pathway specifically controlling PP2A-B55 activity, has been shown to be frequently altered in cancer. Herein, we will review the current knowledge about the mechanisms controlling the formation and the regulation of the activity of this phosphatase and its misregulation in cancer.
Collapse
|
15
|
AKT Regulates Mitotic Progression of Mammalian Cells by Phosphorylating MASTL, Leading to Protein Phosphatase 2A Inactivation. Mol Cell Biol 2020; 40:MCB.00366-18. [PMID: 32123010 DOI: 10.1128/mcb.00366-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Microtubule-associated serine/threonine kinase like (MASTL), also known as Greatwall (Gwl) kinase, has an important role in the regulation of mitosis. By inhibiting protein phosphatase 2A (PP2A), it plays a crucial role in activating one of the most important mitotic kinases, known as cyclin-dependent kinase 1 (CDK1). MASTL has been seen to be upregulated in various types of cancers and is also involved in tumor recurrence. It is activated by CDK1 through phosphorylations in the activation/T-loop, but the complete mechanism of its activation is still unclear. Here, we report that AKT phosphorylates MASTL at residue T299, which plays a critical role in its activation. Our results suggest that AKT increases CDK1-mediated phosphorylation and hence the activity of MASTL, which, in turn, promotes mitotic progression through PP2A inhibition. We also show that the oncogenic potential of AKT is augmented by MASTL activation, since AKT-mediated proliferation in colorectal cell lines can be attenuated by inhibiting and/or silencing MASTL. In brief, we report that AKT plays an important role in the progression of mitosis in mammalian cells and that it does so through the phosphorylation and activation of MASTL.
Collapse
|
16
|
Bhat EA, Sajjad N, Sabir JSM, Kamli MR, Hakeem KR, Rather IA, Bahieldin A. Molecular cloning, expression, overproduction and characterization of human TRAIP Leucine zipper protein. Saudi J Biol Sci 2020; 27:1562-1565. [PMID: 32489294 PMCID: PMC7253899 DOI: 10.1016/j.sjbs.2020.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 11/26/2022] Open
Abstract
The TRAIP interacting protein is known as a negative regulator of TNF-induced-nuclear factor, kappa-light-chain-enhancer of activated B cell (NF-κB) by direct interaction with the adaptor protein TRAF2, which inhibits the function of TRAF2 via the RINGCC domain protein. The TRAIP protein is composed of 469 amino acids with an N-terminal RING motif that is followed by a coiled coil (CC) and leucine zipper domain. TRAIP proteins are critical in programmed cell death, cell proliferation and differentiation, and embryonic development. The critical functions of TRAIP together with the molecular inhibitory mechanism effect of TRAIP have been reported by two different studies and have opened up new research into the field of TRAF biology. In this study, we designed different constructs of the Leucine zipper domain to find the over –expressed construct for further studies. We successfully cloned the C-terminal TRAIP containing the leucine zipper domain. In addition, we have over-expressed and purified the TRAIP LZ for their biochemical characterization.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life Science Institute, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir, India
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.,Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.,Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Irfan A Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.,Centre of Excellence in Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Abstract
The goal of mitosis is to form two daughter cells each containing one copy of each mother cell chromosome, replicated in the previous S phase. To achieve this, sister chromatids held together back-to-back at their primary constriction, the centromere, have to interact with microtubules of the mitotic spindle so that each chromatid takes connections with microtubules emanating from opposite spindle poles (we will refer to this condition as bipolar attachment). Only once all replicated chromosomes have reached bipolar attachments can sister chromatids lose cohesion with each other, at the onset of anaphase, and move toward opposite spindle poles, being segregated into what will soon become the daughter cell nucleus. Prevention of errors in chromosome segregation is granted by a safeguard mechanism called Spindle Assembly Checkpoint (SAC). Until all chromosomes are bipolarly oriented at the equator of the mitotic spindle, the SAC prevents loss of sister chromatid cohesion, thus anaphase onset, and maintains the mitotic state by inhibiting inactivation of the major M phase promoting kinase, the cyclin B-cdk1 complex (Cdk1). Here, we review recent mechanistic insights about the circuitry that links Cdk1 to the SAC to ensure correct achievement of the goal of mitosis.
Collapse
Affiliation(s)
- Angela Flavia Serpico
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.,DMMBM, University of Naples "Federico II", Naples, 80131, Italy
| | - Domenico Grieco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.,Department of Pharmacy, University of Naples "Federico II", Naples, 80131, Italy
| |
Collapse
|
18
|
Mäkelä E, Löyttyniemi E, Salmenniemi U, Kauko O, Varila T, Kairisto V, Itälä-Remes M, Westermarck J. Arpp19 Promotes Myc and Cip2a Expression and Associates with Patient Relapse in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11111774. [PMID: 31717978 PMCID: PMC6895887 DOI: 10.3390/cancers11111774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Disease relapse from standard chemotherapy in acute myeloid leukemia (AML) is poorly understood. The importance of protein phosphatase 2A (PP2A) as an AML tumor suppressor is emerging. Therefore, here, we examined the potential role of endogenous PP2A inhibitor proteins as biomarkers predicting AML relapse in a standard patient population by using three independent patient materials: cohort1 (n = 80), cohort2 (n = 48) and The Cancer Genome Atlas Acute Myeloid Leukemia (TCGA LAML) dataset (n = 160). Out of the examined PP2A inhibitors (CIP2A, SET, PME1, ARPP19 and TIPRL), expression of ARPP19 mRNA was found to be independent of the current AML risk classification. Functionally, ARPP19 promoted AML cell viability and expression of oncoproteins MYC, CDK1, and CIP2A. Clinically, ARPP19 mRNA expression was significantly lower at diagnosis (p = 0.035) in patients whose disease did not relapse after standard chemotherapy. ARPP19 was an independent predictor for relapse both in univariable (p = 0.007) and in multivariable analyses (p = 0.0001) and gave additive information to EVI1 expression and risk group status (additive effect, p = 0.005). Low ARPP19 expression was also associated with better patient outcome in the TCGA LAML cohort (p = 0.019). In addition, in matched patient samples from diagnosis, remission and relapse phases, ARPP19 expression was associated with disease activity (p = 0.034), indicating its potential usefulness as a minimal residual disease (MRD) marker. Together, these data demonstrate the oncogenic function of ARPP19 in AML and its risk group independent role in predicting AML patient relapse tendency.
Collapse
Affiliation(s)
- Eleonora Mäkelä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, 20520 Turku, Finland
| | | | - Urpu Salmenniemi
- Department of Hematology, Turku University Hospital (TYKS), 20521 Turku, Finland
| | - Otto Kauko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Taru Varila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Veli Kairisto
- Central Laboratory, Turku University Hospital (TYKS), 20521 Turku, Finland
| | - Maija Itälä-Remes
- Department of Hematology, Turku University Hospital (TYKS), 20521 Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: or ; Tel.: +358-29-450-2880
| |
Collapse
|
19
|
Játiva S, Calabria I, Moyano-Rodriguez Y, Garcia P, Queralt E. Cdc14 activation requires coordinated Cdk1-dependent phosphorylation of Net1 and PP2A-Cdc55 at anaphase onset. Cell Mol Life Sci 2019; 76:3601-3620. [PMID: 30927017 PMCID: PMC11105415 DOI: 10.1007/s00018-019-03086-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/21/2023]
Abstract
Exit from mitosis and completion of cytokinesis require the inactivation of mitotic cyclin-dependent kinase (Cdk) activity. In budding yeast, Cdc14 phosphatase is a key mitotic regulator that is activated in anaphase to counteract Cdk activity. In metaphase, Cdc14 is kept inactive in the nucleolus, where it is sequestered by its inhibitor, Net1. At anaphase onset, downregulation of PP2ACdc55 phosphatase by separase and Zds1 protein promotes Net1 phosphorylation and, consequently, Cdc14 release from the nucleolus. The mechanism by which PP2ACdc55 activity is downregulated during anaphase remains to be elucidated. Here, we demonstrate that Cdc55 regulatory subunit is phosphorylated in anaphase in a Cdk1-Clb2-dependent manner. Interestingly, cdc55-ED phosphomimetic mutant inactivates PP2ACdc55 phosphatase activity towards Net1 and promotes Cdc14 activation. Separase and Zds1 facilitate Cdk-dependent Net1 phosphorylation and Cdc14 release from the nucleolus by modulating PP2ACdc55 activity via Cdc55 phosphorylation. In addition, human Cdk1-CyclinB1 phosphorylates human B55, indicating that the mechanism is conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Genomics Unit, Medical Research Institute La Fe, Valencia, Spain
| | - Yolanda Moyano-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Patricia Garcia
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
20
|
Dephosphorylation of HDAC4 by PP2A-Bδ unravels a new role for the HDAC4/MEF2 axis in myoblast fusion. Cell Death Dis 2019; 10:512. [PMID: 31273193 PMCID: PMC6609635 DOI: 10.1038/s41419-019-1743-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 11/14/2022]
Abstract
Muscle formation is controlled by a number of key myogenic transcriptional regulators that govern stage-specific gene expression programs and act as terminal effectors of intracellular signaling pathways. To date, the role of phosphatases in the signaling cascades instructing muscle development remains poorly understood. Here, we show that a specific PP2A-B55δ holoenzyme is necessary for skeletal myogenesis. The primary role of PP2A-B55δ is to dephosphorylate histone deacetylase 4 (HDAC4) following myocyte differentiation and ensure repression of Myocyte enhancer factor 2D (MEF2D)-dependent gene expression programs during myogenic fusion. As a crucial HDAC4/MEF2D target gene that governs myocyte fusion, we identify ArgBP2, an upstream inhibitor of Abl, which itself is a repressor of CrkII signaling. Consequently, cells lacking PP2A-B55δ show upregulation of ArgBP2 and hyperactivation of CrkII downstream effectors, including Rac1 and FAK, precluding cytoskeletal and membrane rearrangements associated with myoblast fusion. Both in vitro and in zebrafish, loss-of-function of PP2A-B55δ severely impairs fusion of myocytes and formation of multinucleated muscle fibers, without affecting myoblast differentiation. Taken together, our results establish PP2A-B55δ as the first protein phosphatase to be involved in myoblast fusion and suggest that reversible phosphorylation of HDAC4 may coordinate differentiation and fusion events during myogenesis.
Collapse
|
21
|
Serpico AF, D'Alterio G, Vetrei C, Della Monica R, Nardella L, Visconti R, Grieco D. Wee1 Rather Than Plk1 Is Inhibited by AZD1775 at Therapeutically Relevant Concentrations. Cancers (Basel) 2019; 11:cancers11060819. [PMID: 31200459 PMCID: PMC6627824 DOI: 10.3390/cancers11060819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
Wee1 kinase is an inhibitor of cyclin-dependent kinase (cdk)s, crucial cell cycle progression drivers. By phosphorylating cdk1 at tyrosine 15, Wee1 inhibits activation of cyclin B-cdk1 (Cdk1), preventing cells from entering mitosis with incompletely replicated or damaged DNA. Thus, inhibiting Wee1, alone or in combination with DNA damaging agents, can kill cancer cells by mitotic catastrophe, a tumor suppressive response that follows mitosis onset in the presence of under-replicated or damaged DNA. AZD1775, an orally available Wee1 inhibitor, has entered clinical trials for cancer treatment following this strategy, with promising results. Recently, however, AZD1775 has been shown to inhibit also the polo-like kinase homolog Plk1 in vitro, casting doubts on its mechanism of action. Here we asked whether, in the clinically relevant concentration range, AZD1775 inhibited Wee1 or Plk1 in transformed and non-transformed human cells. We found that in the clinically relevant, nanomolar, concentration range AZD1775 inhibited Wee1 rather than Plk1. In addition, AZD1775 treatment accelerated mitosis onset overriding the DNA replication checkpoint and hastened Plk1-dependent phosphorylation. On the contrary selective Plk1 inhibition exerted opposite effects. Thus, at therapeutic concentrations, AZD1775 inhibited Wee1 rather than Plk1. This information will help to better interpret results obtained by using AZD1775 both in the clinical and experimental settings and provide a stronger rationale for combination therapies.
Collapse
Affiliation(s)
- Angela Flavia Serpico
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy.
- DMMBM, University of Naples "Federico II", 80131 Naples, Italy.
| | - Giuseppe D'Alterio
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy.
- DMMBM, University of Naples "Federico II", 80131 Naples, Italy.
| | - Cinzia Vetrei
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy.
- DMMBM, University of Naples "Federico II", 80131 Naples, Italy.
| | | | - Luca Nardella
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy.
- DMMBM, University of Naples "Federico II", 80131 Naples, Italy.
| | | | - Domenico Grieco
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy.
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy.
| |
Collapse
|
22
|
Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019; 3:70-85. [PMID: 31225502 PMCID: PMC6551743 DOI: 10.15698/cst2019.03.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity is fundamental for cellular physiology. Our hereditary information encoded in the DNA is intrinsically susceptible to suffer variations, mostly due to the constant presence of endogenous and environmental genotoxic stresses. Genomic insults must be repaired to avoid loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental anomalies and tumorigenesis. To safeguard our genome, cells have evolved a series of mechanisms collectively known as the DNA damage response (DDR). This surveillance system regulates multiple features of the cellular response, including the detection of the lesion, a transient cell cycle arrest and the restoration of the broken DNA molecule. While the role of multiple kinases in the DDR has been well documented over the last years, the intricate roles of protein dephosphorylation have only recently begun to be addressed. In this review, we have compiled recent information about the function of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DDR, focusing mainly on their capacity to regulate the DNA damage checkpoint and the repair mechanism encompassed in the restoration of a DNA lesion.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - María Teresa Villoria
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| |
Collapse
|
23
|
Hached K, Goguet P, Charrasse S, Vigneron S, Sacristan MP, Lorca T, Castro A. ENSA and ARPP19 differentially control cell cycle progression and development. J Cell Biol 2019; 218:541-558. [PMID: 30626720 PMCID: PMC6363464 DOI: 10.1083/jcb.201708105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
The Greatwall kinase substrates ARPP19 and ENSA have been shown to inhibit PP2A-B55 by an identical mechanism. Hached et al. show that, surprisingly, the ARPP19 and ENSA paralogs display specific functions during mouse embryogenesis and differentially control cell cycle progression. Greatwall (GWL) is an essential kinase that indirectly controls PP2A-B55, the phosphatase counterbalancing cyclin B/CDK1 activity during mitosis. In Xenopus laevis egg extracts, GWL-mediated phosphorylation of overexpressed ARPP19 and ENSA turns them into potent PP2A-B55 inhibitors. It has been shown that the GWL/ENSA/PP2A-B55 axis contributes to the control of DNA replication, but little is known about the role of ARPP19 in cell division. By using conditional knockout mouse models, we investigated the specific roles of ARPP19 and ENSA in cell division. We found that Arpp19, but not Ensa, is essential for mouse embryogenesis. Moreover, Arpp19 ablation dramatically decreased mouse embryonic fibroblast (MEF) viability by perturbing the temporal pattern of protein dephosphorylation during mitotic progression, possibly by a drop of PP2A-B55 activity inhibition. We show that these alterations are not prevented by ENSA, which is still expressed in Arpp19Δ/Δ MEFs, suggesting that ARPP19 is essential for mitotic division. Strikingly, we demonstrate that unlike ARPP19, ENSA is not required for early embryonic development. Arpp19 knockout did not perturb the S phase, unlike Ensa gene ablation. We conclude that, during mouse embryogenesis, the Arpp19 and Ensa paralog genes display specific functions by differentially controlling cell cycle progression.
Collapse
Affiliation(s)
- Khaled Hached
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Perrine Goguet
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Sophie Charrasse
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Suzanne Vigneron
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Maria P Sacristan
- Instituto de Biología Molecular y Celular del Cáncer, Universidad de Salamanca/Consejo Superior de Investigaciones Cientificas, Salamanca, Spain
| | - Thierry Lorca
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| | - Anna Castro
- Centre de Recherche de Biologie Cellulaire de Montpellier, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Université de Montpellier, Montpellier, France
| |
Collapse
|
24
|
Protein interactomes of protein phosphatase 2A B55 regulatory subunits reveal B55-mediated regulation of replication protein A under replication stress. Sci Rep 2018; 8:2683. [PMID: 29422626 PMCID: PMC5805732 DOI: 10.1038/s41598-018-21040-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022] Open
Abstract
The specific function of PP2A, a major serine/threonine phosphatase, is mediated by regulatory targeting subunits, such as members of the B55 family. Although implicated in cell division and other pathways, the specific substrates and functions of B55 targeting subunits are largely undefined. In this study we identified over 100 binding proteins of B55α and B55β in Xenopus egg extracts that are involved in metabolism, mitochondria function, molecular trafficking, cell division, cytoskeleton, DNA replication, DNA repair, and cell signaling. Among the B55α and B55β-associated proteins were numerous mitotic regulators, including many substrates of CDK1. Consistently, upregulation of B55α accelerated M-phase exit and inhibited M-phase entry. Moreover, specific substrates of CDK2, including factors of DNA replication and chromatin remodeling were identified within the interactomes of B55α and B55β, suggesting a role for these phosphatase subunits in DNA replication. In particular, we confirmed in human cells that B55α binds RPA and mediates the dephosphorylation of RPA2. The B55-RPA association is disrupted after replication stress, consistent with the induction of RPA2 phosphorylation. Thus, we report here a new mechanism that accounts for both how RPA phosphorylation is modulated by PP2A and how the phosphorylation of RPA2 is abruptly induced after replication stress.
Collapse
|
25
|
Cervone N, Monica RD, Serpico AF, Vetrei C, Scaraglio M, Visconti R, Grieco D. Evidence that PP2A activity is dispensable for spindle assembly checkpoint-dependent control of Cdk1. Oncotarget 2018; 9:7312-7321. [PMID: 29484112 PMCID: PMC5800904 DOI: 10.18632/oncotarget.23329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Progression through mitosis, the cell cycle phase deputed to segregate replicated chromosomes, is granted by a protein phosphorylation wave that follows an activation-inactivation cycle of cyclin B-dependent kinase (Cdk) 1, the major mitosis-promoting enzyme. To ensure correct chromosome segregation, the safeguard mechanism spindle assembly checkpoint (SAC) delays Cdk1 inactivation by preventing cyclin B degradation until mitotic spindle assembly. At the end of mitosis, reversal of bulk mitotic protein phosphorylation, downstream Cdk1 inactivation, is required to complete mitosis and crucially relies on the activity of major protein phosphatases like PP2A. A role for PP2A, however, has also been suggested in spindle assembly and SAC-dependent control of Cdk1. Indeed, PP2A was found in complex with SAC proteins while small interfering RNAs (siRNAs)-mediated downregulation of PP2A holoenzyme components affected mitosis completion in mammalian cells. However, whether the SAC-dependent control of Cdk1 required the catalytic activity of PP2A has never been directly assessed. Here, using two PP2A inhibitors, okadaic acid and LB-100, we provide evidence that PP2A activity is dispensable for SAC control of Cdk1 in human cells.
Collapse
Affiliation(s)
- Nando Cervone
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | - Angela Flavia Serpico
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | - Cinzia Vetrei
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mario Scaraglio
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Domenico Grieco
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
- DMMBM, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
26
|
Vassilev A, Lee CY, Vassilev B, Zhu W, Ormanoglu P, Martin SE, DePamphilis ML. Identification of genes that are essential to restrict genome duplication to once per cell division. Oncotarget 2018; 7:34956-76. [PMID: 27144335 PMCID: PMC5085202 DOI: 10.18632/oncotarget.9008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 12/02/2022] Open
Abstract
Nuclear genome duplication is normally restricted to once per cell division, but aberrant events that allow excess DNA replication (EDR) promote genomic instability and aneuploidy, both of which are characteristics of cancer development. Here we provide the first comprehensive identification of genes that are essential to restrict genome duplication to once per cell division. An siRNA library of 21,584 human genes was screened for those that prevent EDR in cancer cells with undetectable chromosomal instability. Candidates were validated by testing multiple siRNAs and chemical inhibitors on both TP53+ and TP53- cells to reveal the relevance of this ubiquitous tumor suppressor to preventing EDR, and in the presence of an apoptosis inhibitor to reveal the full extent of EDR. The results revealed 42 genes that prevented either DNA re-replication or unscheduled endoreplication. All of them participate in one or more of eight cell cycle events. Seventeen of them have not been identified previously in this capacity. Remarkably, 14 of the 42 genes have been shown to prevent aneuploidy in mice. Moreover, suppressing a gene that prevents EDR increased the ability of the chemotherapeutic drug Paclitaxel to induce EDR, suggesting new opportunities for synthetic lethalities in the treatment of human cancers.
Collapse
Affiliation(s)
- Alex Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | - Chrissie Y Lee
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.,Current address: NantBioscience, Culver City, CA 90232, USA
| | - Boris Vassilev
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | - Wenge Zhu
- Department of Biochemistry and Molecular Biology, George Washington University, Washington DC 20037, USA
| | - Pinar Ormanoglu
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Scott E Martin
- National Center of Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.,Current Address: Genentech, Inc., South San Francisco, CA 94080, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA
| |
Collapse
|
27
|
Rogers S, McCloy R, Watkins DN, Burgess A. Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit. Bioessays 2017; 38 Suppl 1:S24-32. [PMID: 27417119 DOI: 10.1002/bies.201670905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022]
Abstract
Entry into mitosis is driven by the activity of kinases, which phosphorylate over 7000 proteins on multiple sites. For cells to exit mitosis and segregate their genome correctly, these phosphorylations must be removed in a specific temporal order. This raises a critical and important question: how are specific phosphorylation sites on an individual protein removed? Traditionally, the temporal order of dephosphorylation was attributed to decreasing kinase activity. However, recent evidence in human cells has identified unique patterns of dephosphorylation during mammalian mitotic exit that cannot be fully explained by the loss of kinase activity. This suggests that specificity is determined in part by phosphatases. In this review, we explore how the physicochemical properties of an individual phosphosite and its surrounding amino acids can affect interactions with a phosphatase. These positive and negative interactions in turn help determine the specific pattern of dephosphorylation required for correct mitotic exit.
Collapse
Affiliation(s)
- Samuel Rogers
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Rachael McCloy
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - D Neil Watkins
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia.,Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - Andrew Burgess
- The Kinghorn Cancer Center, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, Australia
| |
Collapse
|
28
|
Hutter LH, Rata S, Hochegger H, Novák B. Interlinked bistable mechanisms generate robust mitotic transitions. Cell Cycle 2017; 16:1885-1892. [PMID: 28902568 PMCID: PMC5638388 DOI: 10.1080/15384101.2017.1371885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 12/26/2022] Open
Abstract
The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit, 1 and the mitotic checkpoint. 2 Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.
Collapse
Affiliation(s)
- Lukas H. Hutter
- Department of Biochemistry, University of Oxford, Oxford, UK
- Biotop – Open Science Collective, Villach, Austria
| | - Scott Rata
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Béla Novák
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
30
|
The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules 2017; 7:biom7030066. [PMID: 28872598 PMCID: PMC5618247 DOI: 10.3390/biom7030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
To grow, eukaryotic cells must expand by inserting glycerolipids, sphingolipids, sterols, and proteins into their plasma membrane, and maintain the proper levels and bilayer distribution. A fungal cell must coordinate growth with enlargement of its cell wall. In Saccharomyces cerevisiae, a plasma membrane-localized protein kinase complex, Target of Rapamicin (TOR) complex-2 (TORC2) (mammalian ortholog is mTORC2), serves as a sensor and master regulator of these plasma membrane- and cell wall-associated events by directly phosphorylating and thereby stimulating the activity of two types of effector protein kinases: Ypk1 (mammalian ortholog is SGK1), along with a paralog (Ypk2); and, Pkc1 (mammalian ortholog is PKN2/PRK2). Ypk1 is a central regulator of pathways and processes required for plasma membrane lipid and protein homeostasis, and requires phosphorylation on its T-loop by eisosome-associated protein kinase Pkh1 (mammalian ortholog is PDK1) and a paralog (Pkh2). For cell survival under various stresses, Ypk1 function requires TORC2-mediated phosphorylation at multiple sites near its C terminus. Pkc1 controls diverse processes, especially cell wall synthesis and integrity. Pkc1 is also regulated by Pkh1- and TORC2-dependent phosphorylation, but, in addition, by interaction with Rho1-GTP and lipids phosphatidylserine (PtdSer) and diacylglycerol (DAG). We also describe here what is currently known about the downstream substrates modulated by Ypk1-mediated and Pkc1-mediated phosphorylation.
Collapse
|
31
|
Ren D, Fisher LA, Zhao J, Wang L, Williams BC, Goldberg ML, Peng A. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B. J Biol Chem 2017; 292:10026-10034. [PMID: 28446604 DOI: 10.1074/jbc.m117.778233] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation.
Collapse
Affiliation(s)
- Dapeng Ren
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Laura A Fisher
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Jing Zhao
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Ling Wang
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| | - Byron C Williams
- the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Michael L Goldberg
- the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Aimin Peng
- From the Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583 and
| |
Collapse
|
32
|
Merigliano C, Marzio A, Renda F, Somma MP, Gatti M, Vernì F. A Role for the Twins Protein Phosphatase (PP2A-B55) in the Maintenance of Drosophila Genome Integrity. Genetics 2017; 205:1151-1167. [PMID: 28040742 PMCID: PMC5340330 DOI: 10.1534/genetics.116.192781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023] Open
Abstract
The protein phosphatase 2A (PP2A) is a conserved heterotrimeric enzyme that regulates several cellular processes including the DNA damage response and mitosis. Consistent with these functions, PP2A is mutated in many types of cancer and acts as a tumor suppressor. In mammalian cells, PP2A inhibition results in DNA double strand breaks (DSBs) and chromosome aberrations (CABs). However, the mechanisms through which PP2A prevents DNA damage are still unclear. Here, we focus on the role of the Drosophila twins (tws) gene in the maintenance of chromosome integrity; tws encodes the B regulatory subunit (B/B55) of PP2A. Mutations in tws cause high frequencies of CABs (0.5 CABs/cell) in Drosophila larval brain cells and lead to an abnormal persistence of γ-H2Av repair foci. However, mutations that disrupt the PP4 phosphatase activity impair foci dissolution but do not cause CABs, suggesting that a delayed foci regression is not clastogenic. We also show that Tws is required for activation of the G2/M DNA damage checkpoint while PP4 is required for checkpoint recovery, a result that points to a conserved function of these phosphatases from flies to humans. Mutations in the ATM-coding gene tefu are strictly epistatic to tws mutations for the CAB phenotype, suggesting that failure to dephosphorylate an ATM substrate(s) impairs DNA DSBs repair. In addition, mutations in the Ku70 gene, which do not cause CABs, completely suppress CAB formation in tws Ku70 double mutants. These results suggest the hypothesis that an improperly phosphorylated Ku70 protein can lead to DNA damage and CABs.
Collapse
Affiliation(s)
- Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Antonio Marzio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| |
Collapse
|
33
|
The broken "Off" switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA CLINICAL 2016; 6:87-99. [PMID: 27556014 PMCID: PMC4986044 DOI: 10.1016/j.bbacli.2016.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
Aberrant activation of signal transduction pathways can transform a normal cell to a malignant one and can impart survival properties that render cancer cells resistant to therapy. A diverse set of cascades have been implicated in various cancers including those mediated by serine/threonine kinases such RAS, PI3K/AKT, and PKC. Signal transduction is a dynamic process involving both "On" and "Off" switches. Activating mutations of RAS or PI3K can be viewed as the switch being stuck in the "On" position resulting in continued signaling by a survival and/or proliferation pathway. On the other hand, inactivation of protein phosphatases such as the PP2A family can be seen as the defective "Off" switch that similarly can activate these pathways. A problem for therapeutic targeting of PP2A is that the enzyme is a hetero-trimer and thus drug targeting involves complex structures. More importantly, since PP2A isoforms generally act as tumor suppressors one would want to activate these enzymes rather than suppress them. The elucidation of the role of cellular inhibitors like SET and CIP2A in cancer suggests that targeting these proteins can have therapeutic efficacy by mechanisms involving PP2A activation. Furthermore, drugs such as FTY-720 can activate PP2A isoforms directly. This review will cover the current state of knowledge of PP2A role as a tumor suppressor in cancer cells and as a mediator of processes that can impact drug resistance and immune surveillance.
Collapse
|
34
|
Ko CI, Fan Y, de Gannes M, Wang Q, Xia Y, Puga A. Repression of the Aryl Hydrocarbon Receptor Is Required to Maintain Mitotic Progression and Prevent Loss of Pluripotency of Embryonic Stem Cells. Stem Cells 2016; 34:2825-2839. [DOI: 10.1002/stem.2456] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chia-I Ko
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Yunxia Fan
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Matthew de Gannes
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Qin Wang
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Ying Xia
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| | - Alvaro Puga
- Department of Environmental Health and Center for Environmental Genetics; University of Cincinnati College of Medicine; Cincinnati Ohio USA
| |
Collapse
|
35
|
de Castro IJ, Gokhan E, Vagnarelli P. Resetting a functional G1 nucleus after mitosis. Chromosoma 2016; 125:607-19. [PMID: 26728621 PMCID: PMC5023730 DOI: 10.1007/s00412-015-0561-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022]
Abstract
The maintenance of the correct cellular information goes beyond the simple transmission of an intact genetic code from one generation to the next. Epigenetic changes, topological cues and correct protein-protein interactions need to be re-established after each cell division to allow the next cell cycle to resume in the correct regulated manner. This process begins with mitotic exit and re-sets all the changes that occurred during mitosis thus restoring a functional G1 nucleus in preparation for the next cell cycle. Mitotic exit is triggered by inactivation of mitotic kinases and the reversal of their phosphorylation activities on many cellular components, from nuclear lamina to transcription factors and chromatin itself. To reverse all these phosphorylations, phosphatases act during mitotic exit in a timely and spatially controlled manner directing the events that lead to a functional G1 nucleus. In this review, we will summarise the recent developments on the control of phosphatases and their known substrates during mitotic exit, and the key steps that control the restoration of chromatin status, nuclear envelope reassembly and nuclear body re-organisation. Although pivotal work has been conducted in this area in yeast, due to differences between the mitotic exit network between yeast and vertebrates, we will mainly concentrate on the vertebrate system.
Collapse
Affiliation(s)
- Ines J de Castro
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Ezgi Gokhan
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute of Environment Health and Society, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
36
|
Abstract
The cell cycle is the sequence of events through which a cell duplicates its genome, grows, and divides. Key cell cycle transitions are driven by oscillators comprising cyclin-dependent kinases and other kinases. Different cell cycle oscillators are inextricably linked to ensure orderly activation of oscillators. A recurring theme in their regulation is the abundance of auto-amplifying loops that ensure switch-like and unidirectional cell cycle transitions. The periodicity of many cell cycle oscillators is choreographed by inherent mechanisms that promote automatic inactivation, often involving dephosphorylation and ubiquitin-mediated protein degradation. These inhibitory signals are subsequently suppressed to enable the next cell cycle to occur. Although the activation and inactivation of cell cycle oscillators are in essence autonomous during the unperturbed cell cycle, a number of checkpoint mechanisms are able to halt the cell cycle until defects are addressed. Together, these mechanisms orchestrate orderly progression of the cell cycle to produce more cells and to safeguard genome integrity.
Collapse
Affiliation(s)
- Randy Y C Poon
- Division of Life Science, Center for Cancer Research, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong,
| |
Collapse
|
37
|
Clement TM, Inselman AL, Goulding EH, Willis WD, Eddy EM. Disrupting Cyclin Dependent Kinase 1 in Spermatocytes Causes Late Meiotic Arrest and Infertility in Mice. Biol Reprod 2015; 93:137. [PMID: 26490841 DOI: 10.1095/biolreprod.115.134940] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/15/2015] [Indexed: 01/22/2023] Open
Abstract
While cyclin dependent kinase 1 (CDK1) has a critical role in controlling resumption of meiosis in oocytes, its role has not been investigated directly in spermatocytes. Unique aspects of male meiosis led us to hypothesize that its role is different in male meiosis than in female meiosis. We generated a conditional knockout (cKO) of the Cdk1 gene in mouse spermatocytes to test this hypothesis. We found that CDK1-null spermatocytes undergo synapsis, chiasmata formation, and desynapsis as is seen in oocytes. Additionally, CDK1-null spermatocytes relocalize SYCP3 to centromeric foci, express H3pSer10, and initiate chromosome condensation. However, CDK1-null spermatocytes fail to form condensed bivalent chromosomes in prophase of meiosis I and instead are arrested at prometaphase. Thus, CDK1 has an essential role in male meiosis that is consistent with what is known about the role of CDK1 in female meiosis, where it is required for formation of condensed bivalent metaphase chromosomes and progression to the first meiotic division. We found that cKO spermatocytes formed fully condensed bivalent chromosomes in the presence of okadaic acid, suggesting that cKO chromosomes are competent to condense, although they do not do so in vivo. Additionally, arrested cKO spermatocytes exhibited irregular cell shape, irregular large nuclei, and large distinctive nucleoli. These cells persist in the seminiferous epithelium through the next seminiferous epithelial cycle with a lack of stage XII checkpoint-associated cell death. This indicates that CDK1 is required upstream of a checkpoint-associated cell death as well as meiotic metaphase progression in mouse spermatocytes.
Collapse
Affiliation(s)
- Tracy M Clement
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Amy L Inselman
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Eugenia H Goulding
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - William D Willis
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Edward M Eddy
- Gamete Biology Group, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
38
|
Immediate-early response 5 (IER5) interacts with protein phosphatase 2A and regulates the phosphorylation of ribosomal protein S6 kinase and heat shock factor 1. FEBS Lett 2015; 589:3679-85. [PMID: 26496226 DOI: 10.1016/j.febslet.2015.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022]
Abstract
Immediate-early response 5 (IER5) is a growth factor-inducible protein with homology to the N-terminus of IER2. Deletion analysis shows that a large region of IER5, including the N-terminal region, is involved in cell growth and stress resistance. The N-terminal region mediates IER5 oligomerization and binding to the B55 regulatory subunit of protein phosphatase 2A (PP2A). IER5 physically interacts with the PP2A target proteins ribosomal protein S6 kinase (S6K) and heat shock factor 1 (HSF1), and the interactions are essential for the reduced phosphorylation of S6K and HSF1. Our data indicate that oligomeric IER5 regulates PP2A activity and cell growth.
Collapse
|
39
|
Yu C, Ji SY, Sha QQ, Sun QY, Fan HY. CRL4-DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation. Nat Commun 2015; 6:8017. [PMID: 26281983 PMCID: PMC4557334 DOI: 10.1038/ncomms9017] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/07/2015] [Indexed: 01/10/2023] Open
Abstract
Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility. The E3 ubiquitin ligase CRL4 regulates oocyte survival through hydroxymethylation of genomic DNA. Here Yu et al. show that CRL4 is also required for oocytes to complete meiosis I by mediating the poly-ubiquitination and proteasomal degradation of the cell cycle regulator protein phosphatase 2A-A subunit.
Collapse
Affiliation(s)
- Chao Yu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Shu-Yan Ji
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Sha
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Mitchison TJ, Ishihara K, Nguyen P, Wühr M. Size Scaling of Microtubule Assemblies in Early Xenopus Embryos. Cold Spring Harb Perspect Biol 2015; 7:a019182. [PMID: 26261283 DOI: 10.1101/cshperspect.a019182] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The first 12 cleavage divisions in Xenopus embryos provide a natural experiment in size scaling, as cell radius decreases ∼16-fold with little change in biochemistry. Analyzing both natural cleavage and egg extract partitioned into droplets revealed that mitotic spindle size scales with cell size, with an upper limit in very large cells. We discuss spindle-size scaling in the small- and large-cell regimes with a focus on the "limiting-component" hypotheses. Zygotes and early blastomeres show a scaling mismatch between spindle and cell size. This problem is solved, we argue, by interphase asters that act to position the spindle and transport chromosomes to the center of daughter cells. These tasks are executed by the spindle in smaller cells. We end by discussing possible mechanisms that limit mitotic aster size and promote interphase aster growth to cell-spanning dimensions.
Collapse
Affiliation(s)
- Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Keisuke Ishihara
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Phuong Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Martin Wühr
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115 Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
41
|
Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development 2015; 142:3033-45. [PMID: 26253406 DOI: 10.1242/dev.120824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/28/2015] [Indexed: 12/22/2022]
Abstract
Protein phosphatase type 2A complex (PP2A) has been known as a tumor suppressor for over two decades, but it remains unclear exactly how it suppresses tumor growth. Here, we provide data indicating a novel role for PP2A in promoting the transition to quiescence upon terminal differentiation in vivo. Using Drosophila eyes and wings as a model, we find that compromising PP2A activity during the final cell cycle prior to a developmentally controlled cell cycle exit leads to extra cell divisions and delays entry into quiescence. By systematically testing the regulatory subunits of Drosophila PP2A, we find that the B56 family member widerborst (wdb) is required for the role of PP2A in promoting the transition to quiescence. Cells in differentiating tissues with compromised PP2A retain high Cdk2 activity when they should be quiescent, and genetic epistasis tests demonstrate that ectopic Cyclin E/Cdk2 activity is responsible for the extra cell cycles caused by PP2A inhibition. The loss of wdb/PP2A function cooperates with aberrantly high Cyclin E protein levels, allowing cells to bypass a robust G0 late in development. This provides an example of how loss of PP2A can cooperate with oncogenic mutations in cancer. We propose that the PP2A complex plays a novel role in differentiating tissues to promote developmentally controlled quiescence through the regulation of Cyclin E/Cdk2 activity.
Collapse
Affiliation(s)
- Dan Sun
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, MI 48109, USA
| | - Laura Buttitta
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, MI 48109, USA
| |
Collapse
|
42
|
Douglas P, Ye R, Morrice N, Britton S, Trinkle-Mulcahy L, Lees-Miller SP. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis. Mol Cell Biol 2015; 35:2699-713. [PMID: 25986610 PMCID: PMC4524121 DOI: 10.1128/mcb.01312-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 05/12/2015] [Indexed: 02/03/2023] Open
Abstract
Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis.
Collapse
Affiliation(s)
- Pauline Douglas
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ruiqiong Ye
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas Morrice
- Beatson Institute for Cancer Research, Glasgow, Scotland, United Kingdom
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse-Université Paul Sabatier, Equipe Labellisée Ligue contre le Cancer, Toulouse, France
| | - Laura Trinkle-Mulcahy
- Department of Cellular & Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Susan P Lees-Miller
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Southern Alberta Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, Montalto G, Cervello M, Steelman L, Abrams SL, McCubrey JA. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul 2015; 59:65-81. [PMID: 26257206 DOI: 10.1016/j.jbior.2015.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
Abstract
Pancreatic cancer is currently the fourth most common cancer, is increasing in incidence and soon will be the second leading cause of cancer death in the USA. This is a deadly malignancy with an incidence that approximates the mortality with 44,000 new cases and 36,000 deaths each year. Surgery, although only modestly successful, is the only curative option. However, due the locally aggressive nature and early metastasis, surgery can be performed on less than 20% of patients. Cytotoxic chemotherapy is palliative, has significant toxicity and improves survival very little. Thus new treatment paradigms are needed desperately. Due to the extremely high frequency of KRAS gene mutations (>90%) detected in pancreatic cancer patients, the roles of the epidermal growth factor receptor (EGFR), Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTORC1/GSK-3 pathways have been investigated in pancreatic cancer for many years. Constitutively active Ras can activate both of these pathways and there is cross talk between Ras and EGFR which is believed to be important in driving metastasis. Mutant KRAS may also drive the expression of GSK-3 through Raf/MEK/ERK-mediated effects on GSK-3 transcription. GSK-3 can then regulate the expression of NF-kappaB which is important in modulating pancreatic cancer chemoresistance. While the receptors and many downstream signaling molecules have been identified and characterized, there is still much to learn about these pathways and how their deregulation can lead to cancer. Multiple inhibitors to EGFR, PI3K, mTOR, GSK-3, Raf, MEK and hedgehog (HH) have been developed and are being evaluated in various cancers. Current research often focuses on the role of these pathways in cancer stem cells (CSC), with the goal to identify sites where therapeutic resistance may develop. Relatively novel fields of investigation such as microRNAs and drugs used for other diseases e.g., diabetes, (metformin) and malaria (chloroquine) have provided new information about therapeutic resistance and CSCs. This review will focus on recent advances in the field and how they affect pancreatic cancer research and treatment.
Collapse
Affiliation(s)
- Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology & Functional Genomics, Section of Pathology & Oncology, Via Androne, Catania, Italy, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA.
| |
Collapse
|
44
|
Dimerization of TRAF-interacting protein (TRAIP) regulates the mitotic progression. Biochem Biophys Res Commun 2015; 463:864-9. [PMID: 26093298 DOI: 10.1016/j.bbrc.2015.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/04/2015] [Indexed: 01/07/2023]
Abstract
The homo- or hetero-dimerization of proteins plays critical roles in the mitotic progression. The TRAF-interacting protein (TRAIP) is crucial in early mitotic progression and chromosome alignment defects in the metaphase. The TRAIP is a 469 amino acid protein, including the Really Interesting New Gene (RING), coiled-coil (CC), and leucine zipper (LZ) domain. In general, the CC or LZ domain containing proteins forms homo- or hetero-dimerization to achieve its activity. In this study, a number of TRAIP mutants were used to define the TRAIP molecular domains responsible for its homo-dimerization. A co-immunoprecipitation assay indicated that the TRAIP forms homo-dimerization through the CC domain. The cells, expressing the CC domain-deleted mutant that could not form a homo-dimer, increased the mitotic index and promoted mitotic progression.
Collapse
|
45
|
The Human Adenovirus Type 5 E4orf4 Protein Targets Two Phosphatase Regulators of the Hippo Signaling Pathway. J Virol 2015; 89:8855-70. [PMID: 26085163 DOI: 10.1128/jvi.03710-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/05/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED When expressed alone at high levels, the human adenovirus E4orf4 protein exhibits tumor cell-specific p53-independent toxicity. A major E4orf4 target is the B55 class of PP2A regulatory subunits, and we have shown recently that binding of E4orf4 inhibits PP2A(B55) phosphatase activity in a dose-dependent fashion by preventing access of substrates (M. Z. Mui et al., PLoS Pathog 9:e1003742, 2013, http://dx.doi.org/10.1371/journal.ppat.1003742). While interaction with B55 subunits is essential for toxicity, E4orf4 mutants exist that, despite binding B55 at high levels, are defective in cell killing, suggesting that other essential targets exist. In an attempt to identify additional targets, we undertook a proteomics approach to characterize E4orf4-interacting proteins. Our findings indicated that, in addition to PP2A(B55) subunits, ASPP-PP1 complex subunits were found among the major E4orf4-binding species. Both the PP2A and ASPP-PP1 phosphatases are known to positively regulate effectors of the Hippo signaling pathway, which controls the expression of cell growth/survival genes by dephosphorylating the YAP transcriptional coactivator. We find here that expression of E4orf4 results in hyperphosphorylation of YAP, suggesting that Hippo signaling is affected by E4orf4 interactions with PP2A(B55) and/or ASPP-PP1 phosphatases. Furthermore, knockdown of YAP1 expression was seen to enhance E4orf4 killing, again consistent with a link between E4orf4 toxicity and inhibition of the Hippo pathway. This effect may in fact contribute to the cancer cell specificity of E4orf4 toxicity, as many human cancer cells rely heavily on the Hippo pathway for their enhanced proliferation. IMPORTANCE The human adenovirus E4orf4 protein has been known for some time to induce tumor cell-specific death when expressed at high levels; thus, knowledge of its mode of action could be of importance for development of new cancer therapies. Although the B55 form of the phosphatase PP2A has long been known as an essential E4orf4 target, genetic analyses indicated that others must exist. To identify additional E4orf4 targets, we performed, for the first time, a large-scale affinity purification/mass spectrometry analysis of E4orf4 binding partners. Several additional candidates were detected, including key regulators of the Hippo signaling pathway, which enhances cell viability in many cancers, and results of preliminary studies suggested a link between inhibition of Hippo signaling and E4orf4 toxicity.
Collapse
|
46
|
Jeong HC, Gil NY, Lee HS, Cho SJ, Kim K, Chun KH, Cho H, Cha HJ. Timely Degradation of Wip1 Phosphatase by APC/C Activator Protein Cdh1 is Necessary for Normal Mitotic Progression. J Cell Biochem 2015; 116:1602-12. [DOI: 10.1002/jcb.25114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/23/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Ho-Chang Jeong
- College of Natural Sciences; Department of Life Sciences; Sogang University; Seoul Korea
| | - Na-Yeon Gil
- College of Natural Sciences; Department of Life Sciences; Sogang University; Seoul Korea
| | - Ho-Soo Lee
- Department of Biochemistry; Ajou University School of Medicine; Suwon Korea
- Genomic Instability Research Center; Ajou University School of Medicine; Suwon Korea
| | - Seung-Ju Cho
- College of Natural Sciences; Department of Life Sciences; Sogang University; Seoul Korea
| | - Kyungtae Kim
- National Cancer Center; Goyang-si; Gyeonggi-do Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences; College of Pharmacy; Gachon University; Incheon Korea
| | - Hyeseong Cho
- Department of Biochemistry; Ajou University School of Medicine; Suwon Korea
- Genomic Instability Research Center; Ajou University School of Medicine; Suwon Korea
| | - Hyuk-Jin Cha
- College of Natural Sciences; Department of Life Sciences; Sogang University; Seoul Korea
| |
Collapse
|
47
|
Kim T, Moyle MW, Lara-Gonzalez P, De Groot C, Oegema K, Desai A. Kinetochore-localized BUB-1/BUB-3 complex promotes anaphase onset in C. elegans. J Cell Biol 2015; 209:507-17. [PMID: 25987605 PMCID: PMC4442812 DOI: 10.1083/jcb.201412035] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
The conserved Bub1/Bub3 complex is recruited to the kinetochore region of mitotic chromosomes, where it initiates spindle checkpoint signaling and promotes chromosome alignment. Here we show that, in contrast to the expectation for a checkpoint pathway component, the BUB-1/BUB-3 complex promotes timely anaphase onset in Caenorhabditis elegans embryos. This activity of BUB-1/BUB-3 was independent of spindle checkpoint signaling but required kinetochore localization. BUB-1/BUB-3 inhibition equivalently delayed separase activation and other events occurring during mitotic exit. The anaphase promotion function required BUB-1's kinase domain, but not its kinase activity, and this function was independent of the role of BUB-1/BUB-3 in chromosome alignment. These results reveal an unexpected role for the BUB-1/BUB-3 complex in promoting anaphase onset that is distinct from its well-studied functions in checkpoint signaling and chromosome alignment, and suggest a new mechanism contributing to the coordination of the metaphase-to-anaphase transition.
Collapse
Affiliation(s)
- Taekyung Kim
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Mark W Moyle
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Pablo Lara-Gonzalez
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Christian De Groot
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Karen Oegema
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Arshad Desai
- Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037 Ludwig Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
48
|
The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs. Cell Death Differ 2015; 22:1551-60. [PMID: 25744022 PMCID: PMC4532778 DOI: 10.1038/cdd.2015.13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/14/2022] Open
Abstract
To grant faithful chromosome segregation, the spindle assembly checkpoint (SAC) delays mitosis exit until mitotic spindle assembly. An exceedingly prolonged mitosis, however, promotes cell death and by this means antimicrotubule cancer drugs (AMCDs), that impair spindle assembly, are believed to kill cancer cells. Despite malformed spindles, cancer cells can, however, slip through SAC, exit mitosis prematurely and resist killing. We show here that the Fcp1 phosphatase and Wee1, the cyclin B-dependent kinase (cdk) 1 inhibitory kinase, play a role for this slippage/resistance mechanism. During AMCD-induced prolonged mitosis, Fcp1-dependent Wee1 reactivation lowered cdk1 activity, weakening SAC-dependent mitotic arrest and leading to mitosis exit and survival. Conversely, genetic or chemical Wee1 inhibition strengthened the SAC, further extended mitosis, reduced antiapoptotic protein Mcl-1 to a minimum and potentiated killing in several, AMCD-treated cancer cell lines and primary human adult lymphoblastic leukemia cells. Thus, the Fcp1-Wee1-Cdk1 (FWC) axis affects SAC robustness and AMCDs sensitivity.
Collapse
|
49
|
Plumet J, Roscales S. Terpenoids Bearing the 7-Oxabicyclo[2.2.1]heptane (7-Oxanorbornane) Skeleton. Natural Sources, Biological Activities and Chemical Synthesis. HETEROCYCLES 2015. [DOI: 10.3987/rev-14-sr(k)3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Song H, Pan J, Liu Y, Wen H, Wang L, Cui J, Liu Y, Hu B, Yao Z, Ji G. Increased ARPP-19 expression is associated with hepatocellular carcinoma. Int J Mol Sci 2014; 16:178-92. [PMID: 25547487 PMCID: PMC4307242 DOI: 10.3390/ijms16010178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
The cAMP-regulated phosphoprotein 19 (ARPP-19) plays a key role in cell mitotic G2/M transition. Expression of ARPP-19 was increased in human hepatocellular carcinoma (HCC) compared to adjacent non-tumorous liver tissues in 36 paired liver samples, and the level of ARPP-19 in HCC tissues was positively correlated with the tumor size. To determine the interrelationship between ARPP-19 expression and HCC, we silenced ARPP-19 expression in the human hepatocarcinoma HepG2 and SMMC-7721 cells using lentivirus encoding ARPP-19 siRNA. HepG2 and SMMC-7721 cells with ARPP-19 knockdown displayed lowered cell growth rate, retarded colony formation and increased arrest at the G2/M phase transition. Silencing ARPP-19 in HCC cells resulted in decreased protein levels of phospho-(Ser) CDKs substrates and increased levels of inactivated cyclin division cycle 2 (Cdc2). Therefore, ARPP-19 may play a role in HCC pathogenesis through regulating cell proliferation.
Collapse
Affiliation(s)
- Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jielu Pan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Yang Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Hongzhu Wen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Lei Wang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Jiefeng Cui
- Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yinkun Liu
- Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Bing Hu
- Department of Oncology and Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|