1
|
Kang K, Chen SH, Wang DP, Chen F. Inhibition of Endoplasmic Reticulum Stress Improves Chronic Ischemic Hippocampal Damage Associated with Suppression of IRE1α/TRAF2/ASK1/JNK-Dependent Apoptosis. Inflammation 2024; 47:1479-1490. [PMID: 38401021 PMCID: PMC11343861 DOI: 10.1007/s10753-024-01989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Chronic cerebral ischemia is a complex form of stress, of which the most common hemodynamic characteristic is chronic cerebral hypoperfusion (CCH). Lasting endoplasmic reticulum (ER) stress can drive neurological disorders. Targeting ER stress shows potential neuroprotective effects against stroke. However, the role of ER stress in CCH pathological processes and the effects of targeting ER stress on brain ischemia are unclear. Here, a CCH rat model was established by bilateral common carotid artery occlusion. Rats were treated with 4-PBA, URB597, or both for 4 weeks. Neuronal morphological damage was detected using hematoxylin-eosin staining. The expression levels of the ER stress-ASK1 cascade-related proteins GRP78, IRE1α, TRAF2, CHOP, Caspase-12, ASK1, p-ASK1, JNK, and p-JNK were assessed by Western blot. The mRNA levels of TNF-α, IL-1β, and iNOS were assessed by RT-PCR. For oxygen-glucose deprivation experiments, mouse hippocampal HT22 neurons were used. Apoptosis of the hippocampus and HT22 cells was detected by TUNEL staining and Annexin V-FITC analysis, respectively. CCH evoked ER stress with increased expression of GRP78, IRE1α, TRAF2, CHOP, and Caspase-12. Co-immunoprecipitation experiments confirmed the interaction between TRAF2 and ASK1. ASK1/JNK signaling, inflammatory cytokines, and neuronal apoptosis were enhanced, accompanied by persistent ER stress; these were reversed by 4-PBA and URB597. Furthermore, the ASK1 inhibitor GS4997 and 4-PBA displayed synergistic anti-apoptotic effects in cells with oxygen-glucose deprivation. In summary, ER stress-induced apoptosis in CCH is associated with the IRE1α/TRAF2/ASK1/JNK signaling pathway. Targeting the ER stress-ASK1 cascade could be a novel therapeutic approach for ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai, 200040, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, 330029, Jiangxi, China
| | - Da-Peng Wang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
2
|
Obsilova V, Honzejkova K, Obsil T. Structural Insights Support Targeting ASK1 Kinase for Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms222413395. [PMID: 34948191 PMCID: PMC8705584 DOI: 10.3390/ijms222413395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022] Open
Abstract
Apoptosis signal-regulating kinase (ASK) 1, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, modulates diverse responses to oxidative and endoplasmic reticulum (ER) stress and calcium influx. As a crucial cellular stress sensor, ASK1 activates c-Jun N-terminal kinases (JNKs) and p38 MAPKs. Their excessive and sustained activation leads to cell death, inflammation and fibrosis in various tissues and is implicated in the development of many neurological disorders, such as Alzheimer’s, Parkinson’s and Huntington disease and amyotrophic lateral sclerosis, in addition to cardiovascular diseases, diabetes and cancer. However, currently available inhibitors of JNK and p38 kinases either lack efficacy or have undesirable side effects. Therefore, targeted inhibition of their upstream activator, ASK1, stands out as a promising therapeutic strategy for treating such severe pathological conditions. This review summarizes recent structural findings on ASK1 regulation and its role in various diseases, highlighting prospects for ASK1 inhibition in the treatment of these pathologies.
Collapse
Affiliation(s)
- Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
| | - Tomas Obsil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic;
- Correspondence: (V.O.); (T.O.); Tel.: +420-325-87-3513 (V.O.); +420-22-195-1303 (T.O.)
| |
Collapse
|
3
|
Alchera E, Chandrashekar BR, Clemente N, Borroni E, Boldorini R, Carini R. Ischemia/Reperfusion Injury of Fatty Liver Is Protected by A2AR and Exacerbated by A1R Stimulation through Opposite Effects on ASK1 Activation. Cells 2021; 10:3171. [PMID: 34831394 PMCID: PMC8618984 DOI: 10.3390/cells10113171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is aggravated by steatosis and is a main risk factor in fatty liver transplantation. Adenosine receptors (ARs) are emerging as therapeutic targets in liver diseases. By using cellular and in vivo systems of hepatic steatosis and IRI, here we evaluated the effects of pharmacological A2AR and A1R activation. The A2AR agonist CGS21680 protected the primary steatotic murine hepatocyte from IR damage and the activation of ASK1 and JNK. Such an effect was attributed to a phosphatidylinositol-3-kinase (PI3K)/Akt-dependent inhibition of ASK1. By contrast, the A1R agonist CCPA enhanced IR damage, intracellular steatosis and oxidative species (OS) production, thereby further increasing the lipid/OS-dependent ASK1-JNK stimulation. The CGS2680 and CCPA effects were nullified by a genetic ASK1 downregulation in steatotic hepatoma C1C7 cells. In steatotic mice livers, CGS21680 protected against hepatic IRI and ASK1/JNK activation whereas CCPA aggravated hepatic steatosis and IRI, and enhanced ASK1 and JNK stimulation. These results evidence a novel mechanism of CGS21680-mediated hepatoprotection, i.e., the PI3K/AKT-dependent inhibition of ASK1, and they show that CGS21680 and CCPA reduces and enhances the IRI of fatty liver, respectively, by preventing or increasing the activation of the cytotoxic ASK1/JNK axis. They also indicate the selective employment of A2AR agonists as an effective therapeutic strategy to prevent IRI in human fatty liver surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Rita Carini
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.A.); (B.R.C.); (N.C.); (E.B.); (R.B.)
| |
Collapse
|
4
|
DUSP12 acts as a novel endogenous protective signal against hepatic ischemia-reperfusion damage by inhibiting ASK1 pathway. Clin Sci (Lond) 2021; 135:161-166. [PMID: 33416082 PMCID: PMC7796299 DOI: 10.1042/cs20201091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Ischemia–reperfusion injury (IRI) consequent to major liver surgery is a still unmet clinical problem. The activation of endogenous systems of hepatoprotection can prevent the damaging effects of ischemia–reperfusion (IR) as shown by the phenomenon known as ‘ischemic preconditioning’. The identification of endogenous signal mediators of hepatoprotection is of main interest since they could be targeted in future therapeutic interventions. Qiu et al. recently reported in Clin. Sci. (Lond.) (2020) 134(17), 2279–2294, the discovery of a novel protective molecule against hepatic IR damage: dual-specificity phosphatase 12 (DUSP12). IR significantly decreased DUSP12 expression in liver whereas DUSP12 overexpression in hepatocytes protected IRI and DUSP12 deletion in DUSP12 KO mice exacerbated IRI. The protective effects of DUSP12 depended on apoptosis signal-regulating kinase 1 (ASK1) and acted through the inhibition of the ASK1-dependent kinases c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These results enlighten DUSP12 as a novel intermediate negative regulator of the pro-inflammatory and pro-apoptotic ASK1/JNK-p38 MAPK pathway activated during hepatic IR and identify DUSP12 as potential therapeutic target for IRI.
Collapse
|
5
|
Mitochondrial abnormalities: a hub in metabolic syndrome-related cardiac dysfunction caused by oxidative stress. Heart Fail Rev 2021; 27:1387-1394. [PMID: 33950478 PMCID: PMC9197868 DOI: 10.1007/s10741-021-10109-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) refers to a group of cardiovascular risk elements comprising insulin resistance, obesity, dyslipidemia, increased glucose intolerance, and increased blood pressure. Individually, all the MetS components can lead to cardiac dysfunction, while their combination generates additional risks of morbidity and mortality. Growing evidence suggests that oxidative stress, a dominant event in cellular damage and impairment, plays an indispensable role in cardiac dysfunction in MetS. Oxidative stress can not only disrupt mitochondrial activity through inducing oxidative damage to mitochondrial DNA, RNA, lipids, and proteins but can also impair cardiomyocyte contractile function via mitochondria-related oxidative modifications of proteins central to excitation-contraction coupling. Furthermore, excessive reactive oxygen species (ROS) generation can lead to the activation of several mitochondria apoptotic signaling pathways, release of cytochrome c, and eventual induction of myocardial apoptosis. This review will focus on such processes of mitochondrial abnormalities in oxidative stress induced cardiac dysfunction in MetS.
Collapse
|
6
|
Apoptosis signal-regulating kinase 1 inhibition reverses deleterious indoxyl sulfate-mediated endothelial effects. Life Sci 2021; 272:119267. [PMID: 33631173 DOI: 10.1016/j.lfs.2021.119267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022]
Abstract
AIMS Indoxyl sulfate (IS), a protein-bound uremic toxin, is implicated in endothelial dysfunction, which contributes to adverse cardiovascular events in chronic kidney disease. Apoptosis signal regulating kinase 1 (ASK1) is a reactive oxygen species-driven kinase involved in IS-mediated adverse effects. This study assessed the therapeutic potential of ASK1 inhibition in alleviating endothelial effects induced by IS. MAIN METHODS IS, in the presence and absence of a selective ASK1 inhibitor (GSK2261818A), was assessed for its effect on vascular reactivity in rat aortic rings, and cultured human aortic endothelial cells where we evaluated phenotypic and mechanistic changes. KEY FINDINGS IS directly impairs endothelium-dependent vasorelaxation and endothelial cell migration. Mechanistic studies revealed increased production of reactive oxygen species-related markers, reduction of endothelial nitric oxide synthase and increased protein expression of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). IS also increases angiopoietin-2 and tumour necrosis factor α gene expression and promotes transforming growth factor β receptor abundance. Inhibition of ASK1 ameliorated the increase in oxidative stress markers, promoted autocrine interleukin 8 pro-angiogenic signalling and decreased anti-angiogenic responses at least in part via reducing TIMP1 protein expression. SIGNIFICANCE ASK1 inhibition attenuated vasorelaxation and endothelial cell migration impaired by IS. Therefore, ASK1 is a viable intracellular target to alleviate uremic toxin-induced impairment in the vasculature.
Collapse
|
7
|
Kruk J, Aboul-Enein BH, Bernstein J, Gronostaj M. Psychological Stress and Cellular Aging in Cancer: A Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1270397. [PMID: 31814865 PMCID: PMC6877941 DOI: 10.1155/2019/1270397] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiological evidence continues to accumulate on the effect of psychosocial and behavioral factors in relation to cancer risk, progression, and mortality. MATERIAL AND METHODS This article presents the current evidence on the relationship between psychological stress and the risk of cancer and cellular aging process. Ten databases were searched to identify publications up to September 2019. References from retrieved articles were also reviewed. We included nine review papers and 26 cohort or case-control studies based on inclusion/exclusion criteria. RESULTS Results of previously published review articles did not show consistent evidence for the association between cancer risk and psychological stress, while previous evidence is stronger regarding the role of chronic psychological stress on cancer growth and metastasis and aging. In seven observational studies, severe life events, anxiety, depression, insufficient social support perception, or avoiding coping strategy were significantly associated with breast cancer risk. For other specific types of cancer, 11 studies reported increased risk factors for stressful life events, and two others found increased mortality or a decline in treatment adherence. CONCLUSIONS Recent epidemiological evidence generally suggests psychosocial factors may be considered risk factors for specific types of cancer and play a key role in the cellular aging process. Understanding molecular mechanisms of the stress interaction is important in cancer management and prevention. The psychological stressors should be considered when developing or evaluating change in psychosocial practice.
Collapse
Affiliation(s)
- Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, Piastów 40b/6, 71-004 Szczecin, Poland
| | - Basil Hassan Aboul-Enein
- Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK
| | - Joshua Bernstein
- College of Graduate Health Studies, A.T. Still University of Health Sciences, 800 W. Jefferson St., Kirksville, MO 63501, USA
| | - Magdalena Gronostaj
- Faculty of Medicine, Biotechnology and Laboratory Medicine, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland
| |
Collapse
|
8
|
Apoptosis signal-regulating kinase (ASK1) and transcription factor tumor suppressor protein TP53 suppress rabbit ovarian granulosa cell functions. Anim Reprod Sci 2019; 204:140-151. [PMID: 30948244 DOI: 10.1016/j.anireprosci.2019.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 11/23/2022]
Abstract
This study was conducted with the aim to understand the roles of apoptosis signal-regulating kinase (ASK1) and transcription factor tumor suppressor protein TP53, as well as the possible interrelationships, in the control of healthy ovarian cell functions. Rabbit ovarian granulosa cells were transfected with constructs encoding ASK1, TP53, or TP53 + ASK1 and cultured with or without insulin-like growth factor 1 (IGF1). The accumulation of ASK1, the cytoplasmic apoptosis regulators BAX and BCL2, and proliferating cell nuclear antigen (PCNA, a cell proliferation marker), as well as progesterone release, were evaluated by quantitative immunocytochemistry and radioimmunoassay. Results indicate both ASK1 and TP53 promoted the accumulation of BAX, but suppressed that of BCL2 and PCNA. Progesterone release was inhibited by ASK1 and promoted by TP53, while TP53 also stimulated ASK1 accumulation. Additionally, IGF1 stimulated PCNA and reduced progesterone release, but did not affect ASK1. Transfection with ASK1, TP53, or TP53 + ASK1 could modify IGF1 activity, however, there was no cumulative effect with co-transfection of TP53 and ASK1. This is the first results that indicate there is ASK1 suppression of healthy ovarian granulosa cell functions, including promoting apoptosis, inhibiting proliferation, and alter progesterone release. There was also TP53 actions in rabbit ovarian granulosa cells, where it stimulated ASK1, apoptosis, and progesterone release, thus suppressing proliferation and responses to IGF1. The similarity of ASK1 and TP53 effects on apoptosis and proliferation, lack of cumulative action of these molecules, and capacity of TP53 to promote ASK1 accumulation suggest that TP53 can suppress some ovarian granulosa cell functions through ASK1 stimulation.
Collapse
|
9
|
Sirotkin AV, Benco A, Kotwica J, Alwasel SH, Harrath AH. Apoptosis signal-regulating kinase (ASK-1) controls ovarian cell functions. Reprod Fertil Dev 2019; 31:1657-1664. [DOI: 10.1071/rd19055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
The involvement of the apoptosis signal-regulating kinase 1 (ASK1)-related signalling pathway in the control of reproduction is unknown. This study aimed to investigate the role of ASK-1 in the control of basic ovarian functions (proliferation, apoptosis and hormone release) and its response to ovarian hormonal regulators (leptin and FSH). We compared the accumulation of ASK-1, proliferation marker proliferating cell nuclear antigen (PCNA), apoptosis marker Bax and apoptosis and proliferation regulating transcription factor p53 and the release of progesterone (P4), oxytocin (OT), insulin-like growth factor I (IGF-I) and prostaglandins F (PGF) and E (PGE) using cultured porcine ovarian granulosa cells transfected with ASK-1 cDNA and cultured with leptin or FSH. This study is the first to demonstrate that ASK-1 does not affect cell apoptosis and viability in ovarian cells, but promotes cell proliferation, suppresses p53, alters the release of ovarian hormones (P4, OT, IGF-I, PGF and PGE) and defines their response to the upstream hormonal regulators leptin and FSH. Therefore, ASK-1 can be considered a new and important regulator of multiple ovarian functions.
Collapse
|
10
|
Qin L, Min W, Xin S. AIP1 Suppresses Transplant Arteriosclerosis Through Inhibition of Vascular Smooth Muscle Cell Inflammatory Response to IFNγ. Anat Rec (Hoboken) 2018; 302:1587-1593. [PMID: 30471213 DOI: 10.1002/ar.24040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
IFNγ-induced vascular smooth muscle cells (VSMCs) inflammatory response plays a key role in transplant arteriosclerosis (TA). However, the mechanisms regulating this process remains poorly defined. Here, we show that ASK1-interacting protein 1 (AIP1) deletion markedly augments the expression of IFNγ-induced chemokines in mouse aortic allografts. Subsequently, donor arterial grafts from AIP1 deficient mice exhibited an accelerated development of TA. Furthermore, AIP1 knockdown significantly increased IFNγ signaling activation in cultured VSMCs and thus enhances chemokines production in response to IFNγ. Together, we conclude that AIP1 functions as an inhibitor of VSMCs inflammation by regulating IFNγ signaling and therefore suppresses TA progression. Our findings suggest that AIP1 might be a potential therapeutic target for chronic transplant rejection. Anat Rec, 302:1587-1593, 2019. © 2018 American Association for Anatomy.
Collapse
Affiliation(s)
- Lingfeng Qin
- Department of Vascular Surgery, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Liaoning Province, China
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, 155 Nanjing Bei Street, Shenyang, China.,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Liaoning Province, China
| |
Collapse
|
11
|
Abrams SL, Lertpiriyapong K, Yang LV, Martelli AM, Cocco L, Ratti S, Falasca M, Murata RM, Rosalen PL, Lombardi P, Libra M, Candido S, Montalto G, Cervello M, Steelman LS, McCubrey JA. Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Adv Biol Regul 2018; 69:16-34. [PMID: 29980405 DOI: 10.1016/j.jbior.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisplatin, irinotecan, oxaliplatin, and paclitaxel increased significantly. Likewise, the sensitivity to drugs used to treat other cancers such as: doxorubicin, mitoxantrone, and 4 hydroxy tamoxifen (4HT) also increased upon introduction of WT-TP53 into MIA-PaCa-2 cells. Furthermore, the sensitivity to certain inhibitors which target: PI3K/mTORC1, PDK1, SRC, GSK-3, and biochemical processes such as proteasomal degradation and the nutraceutical berberine as increased upon introduction of WT-TP53. Furthermore, in some cases, cells with WT-TP53 were more sensitive to the combination of drugs and suboptimal doses of the MDM2 inhibitor nutlin-3a. However, TP53-independent effects of nutlin-3a were observed upon treatment with either a proteasomal or a PI3K/mTOR inhibitor. These studies indicate the sensitizing effects that WT-TP53 can have in PDAC cells which normally lack WT-TP53 to various therapeutic agents and suggest approaches to improve PDAC therapy.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
12
|
Candido S, Abrams SL, Steelman L, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Suh PG, Libra M, McCubrey JA. Metformin influences drug sensitivity in pancreatic cancer cells. Adv Biol Regul 2018; 68:13-30. [PMID: 29482945 DOI: 10.1016/j.jbior.2018.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction of autophagy. In the following studies, we have examined the effects of metformin in the presence of various chemotherapeutic drugs, signal transduction inhibitors and natural products on the growth of three different PDAC lines. Metformin, by itself, was not effective at suppressing growth of the pancreatic cancer cell lines at concentration less than 1000 nM, however, in certain PDAC lines, a suboptimal dose of metformin (250 nM) potentiated the effects of various chemotherapeutic drugs used to treat pancreatic cancer (e.g., gemcitabine, cisplatin, 5-fluorouracil) and other cancer types (e.g., doxorubicin, docetaxel). Furthermore, metformin could increase anti-proliferative effects of mTORC1 and PI3K/mTOR inhibitors as well as natural products such as berberine and the anti-malarial drug chloroquine in certain PDAC lines. Thus, metformin can enhance the effects of certain drugs and signal transduction inhibitors which are used to treat pancreatic and various other cancers.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Pann-Gill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|