1
|
Almohsen F, Al-Rubaie HA, Habib MA, Nasr SA, Perni R, Al-Quraishi L. Circulating miR-126-3p and miR-423-5p Expression in de novo Adult Acute Myeloid Leukemia: Correlations with Response to Induction Therapy and the 2-Year Overall Survival. J Blood Med 2022; 13:83-92. [PMID: 35210895 PMCID: PMC8863343 DOI: 10.2147/jbm.s347397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Background Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Faez Almohsen
- College of Medicine, University of Baghdad, Baghdad, Iraq
- Correspondence: Faez Almohsen, College of Medicine, University of Baghdad, Baghdad, Iraq, Tel +964 7902834062, Email
| | | | - Manal A Habib
- College of Medicine, University of Baghdad, Baghdad, Iraq
| | - Sherif A Nasr
- siParadigm Diagnostic Informatics, New Jersey, NJ, USA
| | | | | |
Collapse
|
2
|
Analysis of 5-Azacytidine Resistance Models Reveals a Set of Targetable Pathways. Cells 2022; 11:cells11020223. [PMID: 35053339 PMCID: PMC8774143 DOI: 10.3390/cells11020223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023] Open
Abstract
The mechanisms by which myelodysplastic syndrome (MDS) cells resist the effects of hypomethylating agents (HMA) are currently the subject of intensive research. A better understanding of mechanisms by which the MDS cell becomes to tolerate HMA and progresses to acute myeloid leukemia (AML) requires the development of new cellular models. From MDS/AML cell lines we developed a model of 5-azacytidine (AZA) resistance whose stability was validated by a transplantation approach into immunocompromised mice. When investigating mRNA expression and DNA variants of the AZA resistant phenotype we observed deregulation of several cancer-related pathways including the phosphatidylinosito-3 kinase signaling. We have further shown that these pathways can be modulated by specific inhibitors that, while blocking the proliferation of AZA resistant cells, are unable to increase their sensitivity to AZA. Our data reveal a set of molecular mechanisms that can be targeted to expand therapeutic options during progression on AZA therapy.
Collapse
|
3
|
Huang R, Liao X, Li Q. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2424-2452. [PMID: 35240791 DOI: 10.3934/mbe.2022112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study mainly used The Cancer Genome Atlas (TCGA) RNA sequencing dataset to screen prognostic snoRNAs of acute myeloid leukemia (AML), and used for the construction of prognostic snoRNAs signature for AML. A total of 130 AML patients with RNA sequencing dataset were used for prognostic snoRNAs screenning. SnoRNAs co-expressed genes and differentially expressed genes (DEGs) were used for functional annotation, as well as gene set enrichment analysis (GSEA). Connectivity Map (CMap) also used for potential targeted drugs screening. Through genome-wide screening, we identified 30 snoRNAs that were significantly associated with the prognosis of AML. Then we used the step function to screen a prognostic signature composed of 14 snoRNAs (SNORD72, SNORD38, U3, SNORA73B, SNORD79, SNORA73, SNORD12B, SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, SNORA31), which can significantly divide AML patients into high- and low-risk groups. Through GSEA, snoRNAs co-expressed genes and DEGs functional enrichment analysis, we screened a large number of potential functional mechanisms of this prognostic signature in AML, such as phosphatidylinositol 3-kinase-Akt, Wnt, epithelial to mesenchymal transition, T cell receptors, NF-kappa B, mTOR and other classic cancer-related signaling pathways. In the subsequent targeted drug screening using CMap, we also identified six drugs that can be used for AML targeted therapy, they were alimemazine, MG-262, fluoxetine, quipazine, naltrexone and oxybenzone. In conclusion, our current study was constructed an AML prognostic signature based on the 14 prognostic snoRNAs, which may serve as a novel prognostic biomarker for AML.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
4
|
Rigotto G, Montini B, Mattiolo A, Lazzari N, Piano MA, Remondini D, Marmiroli S, Bertacchini J, Chieco-Bianchi L, Calabrò ML. Mechanisms Involved in the Promoting Activity of Fibroblasts in HTLV-1-Mediated Lymphomagenesis: Insights into the Plasticity of Lymphomatous Cells. Int J Mol Sci 2021; 22:10562. [PMID: 34638901 PMCID: PMC8508730 DOI: 10.3390/ijms221910562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Among the mechanisms leading to progression to Adult T-cell Leukaemia/Lymphoma in Human T-cell Leukaemia Virus type 1 (HTLV-1)-infected subjects, the contribution of stromal components remains poorly understood. To dissect the role of fibroblasts in HTLV-1-mediated lymphomagenesis, transcriptome studies, cytofluorimetric and qRT-PCR analyses of surface and intracellular markers linked to plasticity and stemness in coculture, and in vivo experiments were performed. A transcriptomic comparison between a more lymphomagenic (C91/III) and the parental (C91/PL) cell line evidenced hyperactivation of the PI3K/Akt pathway, confirmed by phospho-ELISA and 2-DE and WB analyses. C91/III cells also showed higher expression of mesenchymal and stemness genes. Short-term coculture with human foreskin fibroblasts (HFF) induced these features in C91/PL cells, and significantly increased not only the cancer stem cells (CSCs)-supporting CD10+GPR77+ HFF subpopulation, but also the percentage of ALDH1bright C91/PL cells. A non-cytotoxic acetylsalicylic acid treatment decreased HFF-induced ALDH1bright C91/PL cells, downregulated mesenchymal and stemness genes in cocultured cells, and delayed lymphoma growth in immunosuppressed mice, thus hindering the supportive activity of HFF on CSCs. These data suggest that crosstalk with HFF significantly intensifies the aggressiveness and plasticity of C91/PL cells, leading to the enrichment in lymphoma-initiating cells. Additional research is needed to better characterize these preliminary findings.
Collapse
Affiliation(s)
- Giulia Rigotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Nayana Lazzari
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, and Istituto Nazionale di Fisica Nucleare, INFN, 40127 Bologna, Italy;
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.M.); (J.B.)
| | - Jessika Bertacchini
- Department of Biomedical, Metabolic and Neuronal Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.M.); (J.B.)
| | - Luigi Chieco-Bianchi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy;
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy; (G.R.); (B.M.); (A.M.); (N.L.); (M.A.P.)
| |
Collapse
|
5
|
Darici S, Zavatti M, Braglia L, Accordi B, Serafin V, Horne GA, Manzoli L, Palumbo C, Huang X, Jørgensen HG, Marmiroli S. Synergistic cytotoxicity of dual PI3K/mTOR and FLT3 inhibition in FLT3-ITD AML cells. Adv Biol Regul 2021; 82:100830. [PMID: 34555701 DOI: 10.1016/j.jbior.2021.100830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy, characterized by a heterogeneous genetic landscape and complex clonal evolution, with poor outcomes. Mutation at the internal tandem duplication of FLT3 (FLT3-ITD) is one of the most common somatic alterations in AML, associated with high relapse rates and poor survival due to the constitutive activation of the FLT3 receptor tyrosine kinase and its downstream effectors, such as PI3K signaling. Thus, aberrantly activated FLT3-kinase is regarded as an attractive target for therapy for this AML subtype, and a number of small molecule inhibitors of this kinase have been identified, some of which are approved for clinical practice. Nevertheless, acquired resistance to these molecules is often observed, leading to severe clinical outcomes. Therapeutic strategies to tackle resistance include combining FLT3 inhibitors with other antileukemic agents. Here, we report on the preclinical activity of the combination of the FLT3 inhibitor quizartinib with the dual PI3K/mTOR inhibitor PF-04691502 in FLT3-ITD cells. Briefly, we show that the association of these two molecules displays synergistic cytotoxicity in vitro in FLT3-ITD AML cells, triggering 90% cell death at nanomolar concentrations after 48 h.
Collapse
Affiliation(s)
- Salihanur Darici
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Manuela Zavatti
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Luca Braglia
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Benedetta Accordi
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, Via Giustiniani 3 and IRP Città Della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Valentina Serafin
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, Via Giustiniani 3 and IRP Città Della Speranza, Corso Stati Uniti 4, 35128, Padua, Italy
| | - Gillian A Horne
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carla Palumbo
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK.
| | - Heather G Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Sandra Marmiroli
- Cellular Signaling Unit, Section of Human Morphology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
6
|
Cladribine Combined with Low-Dose Cytarabine as Frontline Treatment for Unfit Elderly Acute Myeloid Leukemia Patients: Results from a Prospective Multicenter Study of Polish Adult Leukemia Group (PALG). Cancers (Basel) 2021; 13:cancers13164189. [PMID: 34439342 PMCID: PMC8391610 DOI: 10.3390/cancers13164189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Treatment of acute myeloid leukemia (AML) in elderly patients unfit for intensive chemotherapy (IC) is a challenge in clinical practice. Here we prospectively evaluated a novel low-intensity regimen consisting of low-dose cytarabine combined with cladribine (LD-AC+cladribine) for remission induction followed by LD-AC alone in the maintenance phase as the frontline treatment for elderly AML patients ineligible for IC. We included a cohort of 117 elderly patients in poor performance status or with significant comorbidities. High-risk or intermediate-risk cytogenetics were observed in almost 90% of patients. Treatment with LD-AC+cladribine led to the objective response rate of 54% and the median overall survival of 17.3 months in the responders group. The toxicity profile was predictable and infectious complications were the most common non-hematological adverse events. In conclusion, we found LD-AC+cladribine as a beneficial therapeutic option with an acceptable safety profile in the difficult-to-treat population of elderly AML patient ineligible for IC. Abstract Acute myeloid leukemia (AML) in older unfit patients is a therapeutic challenge for clinical hematologists. We evaluated the efficacy and safety of a novel low-intensity regimen consisting of low-dose cytarabine and cladribine (LD-AC+cladribine) in first-line treatment of elderly (≥60 years) AML patients not eligible for intensive chemotherapy (IC) who had either the Eastern Cooperative Oncology Group performance status (ECOG PS) ≥2 or the hematopoietic cell transplantation comorbidity index (HCT-CI) score ≥3. The induction phase included two cycles of LD-AC+cladribine. Patients who achieved at least partial remission (PR) received maintenance treatment with LD-AC alone. Overall, 117 patients with a median age of 70 years were enrolled. Adverse cytogenetics, ECOG PS ≥2 and HCT-CI score ≥3 was observed in 43.5%, 60%, and 58% of patients, respectively. The response rate (≥PR) was 54% (complete remission [CR], 32%; CR with incomplete hematologic recovery [CRi], 5%). A median overall survival (OS) was 21 and 8.8 months in CR/CRi and PR group, respectively. Advanced age (≥75 years) and adverse cytogenetics had a negative impact on OS. The 56-day mortality rate was 20.5%. In conclusion, LD-AC+cladribine is a beneficial therapeutic option with a predictable safety profile in elderly AML patients not eligible for IC.
Collapse
|
7
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
8
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
9
|
Zhong Y, Qiu RZ, Sun SL, Zhao C, Fan TY, Chen M, Li NG, Shi ZH. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J Med Chem 2020; 63:12403-12428. [PMID: 32659083 DOI: 10.1021/acs.jmedchem.0c00696] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is an important member of the class III receptor tyrosine kinase (RTK) family, which is involved in the proliferation of hematopoietic cells and lymphocytes. In recent years, increasing evidence have demonstrated that the activation and mutation of FLT3 is closely implicated in the occurrence and development of acute myeloid leukemia (AML). The exploration of small-molecule inhibitors targeting FLT3 has aroused wide interest of pharmaceutical chemists and is expected to bring new hope for AML therapy. In this review, we specifically highlighted FLT3 mediated JAK/STAT, RAS/MAPK, and PI3K/AKT/mTOR signaling. The structural properties and biological activities of representative FLT3 inhibitors reported from 2014 to the present were also summarized. In addition, the major challenges in the current advance of novel FLT3 inhibitors were further analyzed, with the aim to guide future drug discovery.
Collapse
Affiliation(s)
- Yue Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Run-Ze Qiu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Yuan Fan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
10
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
11
|
Rathinaswamy MK, Burke JE. Class I phosphoinositide 3-kinase (PI3K) regulatory subunits and their roles in signaling and disease. Adv Biol Regul 2019; 75:100657. [PMID: 31611073 DOI: 10.1016/j.jbior.2019.100657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
The Class I phosphoinositide 3-kinases (PI3Ks) are a group of heterodimeric lipid kinases that regulate crucial cellular processes including proliferation, survival, growth, and metabolism. The diversity in functions controlled by the various catalytic isoforms (p110α, p110β, p110δ, and p110γ) depends on their abilities to be activated by distinct stimuli such as receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCRs), and the Ras family of small G-proteins. A major factor determining the ability of each p110 enzyme to be activated is the presence of regulatory binding partners. Given the overwhelming evidence for the involvement of PI3Ks in diseases such as cancer, inflammation, immunodeficiency and diabetes, an understanding of how these regulatory proteins influence PI3K function is essential. This article highlights research deciphering the role of regulatory subunits in PI3K signaling and their involvement in human disease.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
| |
Collapse
|
12
|
Wang D, Zhou W, Chen J, Wei W. Upstream regulators of phosphoinositide 3-kinase and their role in diseases. J Cell Physiol 2019; 234:14460-14472. [PMID: 30710358 DOI: 10.1002/jcp.28215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K), a crucial signaling molecule, is regulated by various upstream regulators. Traditionally, receptor tyrosine kinases and G protein-coupled receptor are regarded as its principle upstream regulators; however, recent reports have indicated that spleen tyrosine kinase, β-arrestin2, Janus kinase, and RAS can also perform this role. Dysregulation of PI3K is common in the progression of various diseases, including, but not limited to, tumors, Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, and acute myelogenous leukemia. The aim of this review is to provide a perspective on PI3K-related diseases examining both the classical and nonclassical upstream regulators of PI3K in detail.
Collapse
Affiliation(s)
- Dandan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
13
|
Panda M, Biswal BK. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol Biol Rep 2019; 46:5645-5659. [PMID: 31280421 DOI: 10.1007/s11033-019-04958-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Drug resistance is a major setback for advanced therapeutics in multiple cancers. The increasing prevalence of this resistance is a growing concern and bitter headache for the researchers since a decade. Hence, it is essential to revalidate the existing strategies available for cancer treatment and to look after a novel therapeutic approach for target based killing of cancer cells at the genetic level. This review outlines the different mechanisms enabling resistance including drug efflux, drug target alternation, alternative splicing, the release of the extracellular vesicle, tumor heterogeneity, epithelial-mesenchymal transition, tumor microenvironment, the secondary mutation in the receptor, epigenetic alternation, heterodimerization of receptors, amplification of target and amplification of components rather than the target. Furthermore, existing evidence and the role of various signaling pathways like EGFR, Ras, PI3K/Akt, Wnt, Notch, TGF-β, Integrin-ECM signaling in drug resistance are explained. Lastly, the prevention of this resistance by a contemporary therapeutic strategy, i.e., a combination of specific signaling pathway inhibitors and the cocktail of a cancer drug is summarized showing the new treatment strategies.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India.
| |
Collapse
|
14
|
Ramazzotti G, Ratti S, Fiume R, Follo MY, Billi AM, Rusciano I, Owusu Obeng E, Manzoli L, Cocco L, Faenza I. Phosphoinositide 3 Kinase Signaling in Human Stem Cells from Reprogramming to Differentiation: A Tale in Cytoplasmic and Nuclear Compartments. Int J Mol Sci 2019; 20:ijms20082026. [PMID: 31022972 PMCID: PMC6514809 DOI: 10.3390/ijms20082026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
Stem cells are undifferentiated cells that can give rise to several different cell types and can self-renew. Given their ability to differentiate into different lineages, stem cells retain huge therapeutic potential for regenerative medicine. Therefore, the understanding of the signaling pathways involved in stem cell pluripotency maintenance and differentiation has a paramount importance in order to understand these biological processes and to develop therapeutic strategies. In this review, we focus on phosphoinositide 3 kinase (PI3K) since its signaling pathway regulates many cellular processes, such as cell growth, proliferation, survival, and cellular transformation. Precisely, in human stem cells, the PI3K cascade is involved in different processes from pluripotency and induced pluripotent stem cell (iPSC) reprogramming to mesenchymal and oral mesenchymal differentiation, through different and interconnected mechanisms.
Collapse
Affiliation(s)
- Giulia Ramazzotti
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Stefano Ratti
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Roberta Fiume
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Matilde Yung Follo
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Anna Maria Billi
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Isabella Rusciano
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Eric Owusu Obeng
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Lucia Manzoli
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Lucio Cocco
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| | - Irene Faenza
- Department of Biomedical Sciences, University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy.
| |
Collapse
|
15
|
Zheng A, Li F, Chen F, Zuo J, Wang L, Wang Y, Chen S, Xiao B, Tao Z. PD‑L1 promotes head and neck squamous cell carcinoma cell growth through mTOR signaling. Oncol Rep 2019; 41:2833-2843. [PMID: 30864729 PMCID: PMC6448093 DOI: 10.3892/or.2019.7053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 03/04/2019] [Indexed: 12/18/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1), an immune co-stimulatory molecule, is expressed on various cancer cells and the surface of immune cells. Its overexpression on tumor cells suppresses the immune response to promote tumor cell immune escape. The present study demonstrated that PD-L1 was critical in head and neck squamous cell carcinoma (HNSCC) carcinogenesis. Immunohistochemical analysis of HNSCC tissue microarrays revealed that PD-L1 was overexpressed in tumor tissue, and its expression increased as tumor malignancy progressed (from grade I to IV). Subsequently, the expression of PD-L1 was knocked down or overexpressed in the HNSCC cell lines Cal-27 and Fadu. It was demonstrated that PD-L1 significantly induced HNSCC cell proliferation and colony forming ability. Cell proliferation was also promoted in Cal-27 cell xenograft BALB/c nude mice. In addition, it was determined by western blotting that the PD-L1-mediated increase in HNSCC cell proliferation may have been associated with the activation of mammalian target of rapamycin (mTOR) signaling pathway. Furthermore, mTOR inhibitor (rapamycin) prevented the increase in proliferation. Based on these results, it was concluded that PD-L1 promoted cell proliferation of HNSCC cells through mTOR signaling, and blocking PD-L1 may be conducive in HNSCC therapy.
Collapse
Affiliation(s)
- Anyuan Zheng
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Research Institute of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fuhai Chen
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingjing Zuo
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yongping Wang
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shiming Chen
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bokui Xiao
- Research Institute of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zezhang Tao
- Department of Otolaryngology‑Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
16
|
Darvishi M, Mashati P, Khosravi A. The clinical significance of CDX2 in leukemia: A new perspective for leukemia research. Leuk Res 2018; 72:45-51. [PMID: 30096576 DOI: 10.1016/j.leukres.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
CDX2 gene encodes a transcription factor involved in primary embryogenesis and hematopoietic development; however, the expression of CDX2 in adults is restricted to intestine and is not observed in blood tissues. The ectopic expression of CDX2 has been frequently observed in acute myeloid and lymphoid leukemia which in most cases is concomitant with poor prognosis. Induction of CDX2 in mice leads to hematologic complications, showing the leukemogenic origin of this gene. CDX2 plays significant role in the most critical pathways as the regulator of important transcription factors targeting cell proliferation, multi-drug resistance and survival. On the whole, the results indicate that CDX2 has the potential to be suggested as the diagnostic marker in hematologic malignancies. This review discusses the role of aberrant expression of CDX2 in the prognosis and the response to treatment in patients with different leukemia in clinical reports in the recent decades. The improvement in this regard could be of high importance in diagnosis and treatment methods.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pargol Mashati
- Department of Hematology and Blood Bank, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|