1
|
Hifumi E, Ito Y, Tsujita M, Taguchi H, Uda T. Enzymatization of mouse monoclonal antibodies to the corresponding catalytic antibodies. Sci Rep 2024; 14:12184. [PMID: 38806597 PMCID: PMC11133420 DOI: 10.1038/s41598-024-63116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Catalytic antibodies possess a dual function that enables both antigen recognition and degradation. However, their time-consuming preparation is a significant drawback. This study developed a new method for quickly converting mice monoclonal antibodies into catalytic antibodies using site-directed mutagenesis. Three mice type monoclonal antibodies targeting hemagglutinin molecule of influenza A virus could be transformed into the catalytic antibodies by deleting Pro95 in CDR-3 of the light chain. No catalytic activity was observed for monoclonal antibodies and light chains. In contrast, the Pro95-deleted light chains exhibited a catalytic activity to cleave the antigenic peptide including the portion of conserved region of hemagglutinin molecule. The affinity of the Pro95-deleted light chains to the antigen increased approximately 100-fold compared to the wild-type light chains. In the mutants, three residues (Asp1, Ser92, and His93) come closer to the appropriate position to create the catalytic site and contributing to the enhancement of both catalytic function and immunoreactivity. Notably, the Pro95-deleted catalytic light chains could suppress influenza virus infection in vitro assay, whereas the parent antibody and the light chain did not. This strategy offers a rapid and efficient way to create catalytic antibodies from existing antibodies, accelerating the development for various applications in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Emi Hifumi
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan.
- Research Center for GLOBAL/LOCAL Infectious Diseases, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan.
| | - Yuina Ito
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
| | - Moe Tsujita
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
| | - Hiroaki Taguchi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, 510-0293, Japan
| | - Taizo Uda
- Institute for Research Management, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
- Materials Open Laboratory, Institute of Systems, Information Technologies and Nanotechnologies (ISIT), Fukuoka, 819-0388, Japan
| |
Collapse
|
2
|
Hifumi E, Arakawa M, Matsumoto S, Yamamoto T, Katayama Y, Uda T. Biochemical features and antiviral activity of a monomeric catalytic antibody light-chain 23D4 against influenza A virus. FASEB J 2015; 29:2347-58. [PMID: 25713031 DOI: 10.1096/fj.14-264275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/26/2015] [Indexed: 02/02/2023]
Abstract
Catalytic antibodies have exhibited interesting functions against some infectious viruses such as HIV, rabies virus, and influenza virus in vitro as well as in vivo. In some cases, a catalytic antibody light chain takes on several structures from the standpoint of molecular size (monomer, dimer, etc.) and/or isoelectronic point. In this study, we prepared a monomeric 23D4 light chain by mutating the C-terminal Cys to Ala of the wild-type. The mutated 23D4 molecule took a simple monomeric form, which could hydrolyze synthetic 4-methyl-coumaryl-7-amide substrates and a plasmid DNA. Because the monomeric 23D4 light chain suppressed the infection of influenza virus A/Hiroshima/37/2001 in an in vitro assay, the corresponding experiments were conducted in vivo, after the virus strain (which was taken from a human patient) was successfully adapted into BALB/cN Sea mice. In the experiments, a mixture of the monomeric 23D4 and the virus was nasally administered 1) with preincubation and 2) without preincubation. As a result, the monomeric 23D4 clearly exhibited the ability to suppress the influenza virus infection in both cases, indicating a potential drug for preventing infection of the influenza A virus.
Collapse
Affiliation(s)
- Emi Hifumi
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Mitsue Arakawa
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Shingo Matsumoto
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Tatsuhiro Yamamoto
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Yoshiki Katayama
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| | - Taizo Uda
- *Research Promotion Institute, Oita University, Oita-shi, Oita, Japan; Japan Science and Technology Agency-Core Research for Evolutional Science and Technology, Kawaguchi, Saitama, Japan; Faculty of Medicine, Oita University, Yufu-city, Oita, Japan; Department of Applied Chemistry; Oita University, Oita-shi, Oita, Japan; Graduate School of Systems Life Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan; and Institute of Systems, Information Technologies and Nanotechnologies, Nanotechnology Laboratory, Fukuoka, Japan
| |
Collapse
|
4
|
Abstract
The tree structure is currently the accepted paradigm to represent evolutionary relationships between organisms, species or other taxa. However, horizontal, or reticulate, genomic exchanges are pervasive in nature and confound characterization of phylogenetic trees. Drawing from algebraic topology, we present a unique evolutionary framework that comprehensively captures both clonal and reticulate evolution. We show that whereas clonal evolution can be summarized as a tree, reticulate evolution exhibits nontrivial topology of dimension greater than zero. Our method effectively characterizes clonal evolution, reassortment, and recombination in RNA viruses. Beyond detecting reticulate evolution, we succinctly recapitulate the history of complex genetic exchanges involving more than two parental strains, such as the triple reassortment of H7N9 avian influenza and the formation of circulating HIV-1 recombinants. In addition, we identify recurrent, large-scale patterns of reticulate evolution, including frequent PB2-PB1-PA-NP cosegregation during avian influenza reassortment. Finally, we bound the rate of reticulate events (i.e., 20 reassortments per year in avian influenza). Our method provides an evolutionary perspective that not only captures reticulate events precluding phylogeny, but also indicates the evolutionary scales where phylogenetic inference could be accurate.
Collapse
|
5
|
Hifumi E, Takao SI, Fujimoto N, Uda T. Catalytic and biochemical features of a monoclonal antibody heavy chain, JN1-2, raised against a synthetic peptide with a hemagglutinin molecule of influenza virus. J Am Chem Soc 2011; 133:15015-24. [PMID: 21861493 DOI: 10.1021/ja203922r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has long been an important issue to produce a catalytic antibody that possesses the ability to lose the infectivity of a bacteria or virus. The monoclonal antibody JN1-2 was generated using a synthetic peptide (TGLRNGITNKVNSVIEKAA) conjugated with human IgG. The peptide sequence includes the conserved region of the hemagglutinin molecule (HA(1) and HA(2) domains), which locates on the envelope of the influenza virus and plays an important role in influenza A virus infection. The monoclonal antibody specifically reacted with the HA2 domain, not only of H2 but also of an H1 strain of the H1N1 subtype (H1 strain). The heavy chain (JN1-2-H) isolated from the parent antibody showed catalytic activity cleaving the above antigenic peptide with very high turnover (kcat = 26 min(-1)), and it could slowly degrade the recombinant HA(2) domain by the catalytic function. Interestingly, the heavy chain exhibited the ability to reduce the infectivity of type A H1N1 but not type B, indicating specificity to type A. This characteristic monoclonal catalytic antibody heavy chain could suppress the infection of the influenza virus in vitro assays.
Collapse
Affiliation(s)
- Emi Hifumi
- Research Center for Applied Medical Engineering, Oita University, Oita-shi, Oita, Japan
| | | | | | | |
Collapse
|
6
|
Sui J, Sheehan J, Hwang WC, Bankston LA, Burchett SK, Huang CY, Liddington RC, Beigel JH, Marasco WA. Wide prevalence of heterosubtypic broadly neutralizing human anti-influenza A antibodies. Clin Infect Dis 2011; 52:1003-9. [PMID: 21460314 PMCID: PMC3070035 DOI: 10.1093/cid/cir121] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/23/2010] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lack of life-long immunity against influenza viruses represents a major global health care problem with profound medical and economic consequences. A greater understanding of the broad-spectrum "heterosubtypic" neutralizing human antibody (BnAb) response to influenza should bring us closer toward a universal influenza vaccine. METHODS Serum samples obtained from 77 volunteers in an H5N1 vaccine study were analyzed for cross-reactive antibodies (Abs) against both subtype hemagglutinins (HAs) and a highly conserved pocket on the HA stem of Group 1 viruses. Cross-reactive Abs in commercial intravenous immunoglobulin were affinity purified using H5-coupled beads followed by step-wise monoclonal antibody competition or acid elution. Enzyme-linked immunosorbent assays were used to quantify cross-binding, and neutralization activity was determined with HA-pseudotyped viruses. RESULTS Prevaccination serum samples have detectable levels of heterosubtypic HA binding activity to both Group 1 and 2 influenza A viruses, including subtypes H5 and H7, respectively, to which study subjects had not been vaccinated. Two different populations of Broadly neutralizing Abs (BnAbs) were purified from intravenous immunoglobulin by H5 beads: ~0.01% of total immunoglobulin G can bind to HAs from both Group 1 and 2 and neutralize H1N1 and H5N1 viruses; ~0.001% is F10-like Abs directed against the HA stem pocket on Group 1 viruses. CONCLUSION These data--to our knowledge, for the first time--quantitatively show the presence, albeit at low levels, of two populations of heterosubtypic BnAbs against influenza A in human serum. These observations warrant further investigation to determine their origin, host polymorphism(s) that may affect their expression levels and how to boost these BnAb responses by vaccination to reach sustainable protective levels.
Collapse
Affiliation(s)
- Jianhua Sui
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
- Department of Medicine, Harvard Medical School
| | - Jared Sheehan
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
| | - William C. Hwang
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Laurie A. Bankston
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Sandra K. Burchett
- Division of Infectious Diseases, Children's Hospital Boston, Boston, Massachusetts
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Chiung-Yu Huang
- National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Robert C. Liddington
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - John H. Beigel
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Wayne A. Marasco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute
- Department of Medicine, Harvard Medical School
| |
Collapse
|