1
|
Hsieh PF, Jiang WP, Basavaraj P, Huang SY, Ruangsai P, Wu JB, Huang GJ, Huang WC. Cell suspension culture extract of Eriobotrya japonica attenuates growth and induces apoptosis in prostate cancer cells via targeting SREBP-1/FASN-driven metabolism and AR. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153806. [PMID: 34740154 DOI: 10.1016/j.phymed.2021.153806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is one of the main causes of male cancer mortality. There is currently no effective treatment to cure this deadly prostate cancer (PCa) progression. However, recent research showed that activation of lipogenesis leads to CRPC progression. It provides a rationale to target the highly lipogenic activity as a novel and promising therapy against lethal CRPC. PURPOSES The present study aims to evaluate the anticancer efficacy and the molecular mechanism of cell suspension culture extract from Eriobotrya japonica (EJCE) in PCa, including CRPC. METHODS Cell growth, migration and invasion analyses were performed by MTT method, a wound healing assay and the transwell method, respectively. Apoptosis was assessed by a flow cytometry-based Annexin V-FITC/PI assay, caspase enzymatic activity and Western blot analyses. Lipogenesis was determined by a Fatty Acid Quantification Kit and an Oil Red O staining. The in vivo experiment was conducted by a xenograft mouse model. RESULTS PCa cell growth, migration and invasion were significantly affected by EJCE. EJCE decreased expression of sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FASN) in PCa cells, two main factors for lipogenesis. By inhibiting SREBP-1/FASN, EJCE reduced the intracellular fatty acid levels and lipid droplet accumulation in PCa. Moreover, EJCE down-regulated the androgen receptor (AR) and prostate-specific antigen (PSA) in PCa cells. Significantly, EJCE exhibited the potential anticancer activity by suppressing the growth and leading to apoptosis of CRPC tumors in a xenograft mouse model. CONCLUSION These results reveal a novel therapeutic molecular mechanism of EJCE in PCa. Blockade of SREBP-1/FASN-driven metabolism and AR by EJCE could be employed as a potent opportunity to cure malignant PCa.
Collapse
Affiliation(s)
- Po-Fan Hsieh
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan; Department of Urology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Ping Jiang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.; Department of Occupational Therapy, Asia University, Taichung, Taiwan
| | - Praveenkumar Basavaraj
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Yin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Phakkhathorn Ruangsai
- International Master's Program of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jin-Bin Wu
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan; International Master's Program of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Pérez-González MZ, Jiménez-Arellanes MA. Biotechnological processes to obtain bioactive secondary metabolites from some Mexican medicinal plants. Appl Microbiol Biotechnol 2021; 105:6257-6274. [PMID: 34415391 DOI: 10.1007/s00253-021-11471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
The consumption of medicinal plants has increased in recent decades due to the fact that they biosynthesize compounds with many biological activities; thus, some plant species with biological potential are being utilized as raw material by the industries for preparation of drugs, phytodrugs, or food supplements. This has the consequence of overexploitation and deforestation, which endangers plant species-of-interest. In recent years, alternatives have been sought to eradicate this problem. A solution that was given and is maintained is plant biotechnology, which favors the production of secondary metabolites (SMt) with important biological activity. Plant biotechnology allows us to increase the yield of a compound-of-interest, reduces its production times and costs, and allows constant and controlled production of the raw material, while aiding in the protection of medicinal plants that are found in danger of extinction. In the scientific literature, procuring the SMt by means of biotechnological processes is described, highlighting the study of five species from Mexican traditional medicine (Lopezia racemosa, Galphimia glauca, Cnidoscolus chayamansa, and Buddleja cordata), and the main biological activities are as follows: anti-inflammatory, hepatoprotector, neuroprotector, anxiolytic, antitumoral, antibacterial, and antioxidant, among others. KEY POINTS: • Secondary metabolites produce by biotechnology processes • Active secondary metabolites isolated from Mexican medicinal plants • Recent advances on the production of some bioactive secondary metabolites.
Collapse
Affiliation(s)
- Mariana Zuleima Pérez-González
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialiades, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores; Alcaldía Cuauhtémoc 06720, Mexico City, CdMx, Mexico
| | - María Adelina Jiménez-Arellanes
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialiades, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Av. Cuauhtémoc 330, Col. Doctores; Alcaldía Cuauhtémoc 06720, Mexico City, CdMx, Mexico.
| |
Collapse
|
3
|
Olech M, Ziemichód W, Nowacka-Jechalke N. The Occurrence and Biological Activity of Tormentic Acid-A Review. Molecules 2021; 26:molecules26133797. [PMID: 34206442 PMCID: PMC8270333 DOI: 10.3390/molecules26133797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
This review focuses on the natural sources and pharmacological activity of tormentic acid (TA; 2α,3β,19α-trihydroxyurs-2-en-28-oic acid). The current knowledge of its occurrence in various plant species and families is summarized. Biological activity (e.g., anti-inflammatory, antidiabetic, antihyperlipidemic, hepatoprotective, cardioprotective, neuroprotective, anti-cancer, anti-osteoarthritic, antinociceptive, antioxidative, anti-melanogenic, cytotoxic, antimicrobial, and antiparasitic) confirmed in in vitro and in vivo studies is compiled and described. Biochemical mechanisms affected by TA are indicated. Moreover, issues related to the biotechnological methods of production, effective eluents, and TA derivatives are presented.
Collapse
|
4
|
Linh TM, Mai NC, Hoe PT, Ngoc NT, Thao PTH, Ban NK, Van NT. Development of a Cell Suspension Culture System for Promoting Alkaloid and Vinca Alkaloid Biosynthesis Using Endophytic Fungi Isolated from Local Catharanthus roseus. PLANTS 2021; 10:plants10040672. [PMID: 33807415 PMCID: PMC8066771 DOI: 10.3390/plants10040672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
Cell and tissue cultures of Catharanthus roseus have been studied extensively as an alternative strategy to improve the production of valuable secondary metabolites. The purpose of this study was to produce C. roseus callus and suspension cell biomass of good quality and quantity to improve the total alkaloids and bis-indole alkaloids. The young stem derived-callus of C. roseus variety Quang Ninh (QN) was grown on MS medium supplemented with 1.5 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) plus 1.5 mg/L kinetin, and the growth rate increased by 67-fold after 20 days. The optimal conditions for maintaining the cell suspension culture were 150 mg/50 mL cell inoculum, a medium pH of 5.5 and a culture temperature of 25 °C. The low alkaloid content in the culture was compensated for by using endophytic fungi isolated from local C. roseus. Cell extracts of endophytic fungi—identified as Fusarium solani RN1 and Chaetomium funicola RN3—were found to significantly promote alkaloid accumulation. This elicitation also stimulated the accumulation of a tested bis-indole alkaloid, vinblastine. The findings are important for investigating the effects of fungal elicitors on the biosynthesis of vinblastine and vincristine, as well as other terpenoid indole alkaloids (TIAs), in C. roseus QN cell suspension cultures.
Collapse
Affiliation(s)
- Tran My Linh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (N.C.M.); (P.T.H.); (N.T.N.); (N.K.B.)
- Correspondence: ; Tel.: +84-(0)942-202-525
| | - Nguyen Chi Mai
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (N.C.M.); (P.T.H.); (N.T.N.); (N.K.B.)
| | - Pham Thi Hoe
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (N.C.M.); (P.T.H.); (N.T.N.); (N.K.B.)
| | - Ninh Thi Ngoc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (N.C.M.); (P.T.H.); (N.T.N.); (N.K.B.)
| | - Phan Thi Hong Thao
- Institute of Biotechnology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (P.T.H.T.); (N.T.V.)
| | - Ninh Khac Ban
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (N.C.M.); (P.T.H.); (N.T.N.); (N.K.B.)
| | - Nguyen Tuong Van
- Institute of Biotechnology, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (P.T.H.T.); (N.T.V.)
| |
Collapse
|
5
|
Feng X, Lu YH, Liu Z, Li DP, Zou YX, Fang YQ, Chu ZY. Microbial transformation of the anti-diabetic agent corosolic acid by Cunninghamella echinulata. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:645-650. [PMID: 27240189 DOI: 10.1080/10286020.2016.1187140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
The pentacyclic triterpenoid corosolic acid was metabolized by Cunninghamella echinulata CGMCC 3.2000 to its C-24 aldehyde group metabolite and five other hydroxylated metabolites: madasiatic acid (2), 2α, 3β, 7β-trihydroxyurs-12-en-28-oic acid (3), 2α, 3β, 15α-trihydroxyurs-12-en-28-oic acid (4), 2α, 3β, 6β, 7β-tetrahydroxyurs-12-en-28-oic acid (5), 2α, 3β, 7β, 15α-tetrahydroxyurs-12-en-28-oic acid (6), and 2α, 3β,7β-trihydroxy-24-al-urs-12-en-28-oic acid (7); compounds 3, 5, and 7 were new compounds. The α-glucosidase inhibitory effects of the metabolites were also evaluated.
Collapse
Affiliation(s)
- Xu Feng
- a Navy Medical Research Institute , Shanghai 200433 , China
| | - Yan-Hua Lu
- b State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200207 , China
| | - Zhen Liu
- a Navy Medical Research Institute , Shanghai 200433 , China
- c Shanghai Ocean University , Shanghai 201306 , China
| | - Dai-Ping Li
- a Navy Medical Research Institute , Shanghai 200433 , China
| | - Ying-Xin Zou
- a Navy Medical Research Institute , Shanghai 200433 , China
| | - Yi-Qun Fang
- a Navy Medical Research Institute , Shanghai 200433 , China
| | - Zhi-Yong Chu
- a Navy Medical Research Institute , Shanghai 200433 , China
| |
Collapse
|
6
|
Jiang WP, Huang SS, Matsuda Y, Saito H, Uramaru N, Ho HY, Wu JB, Huang GJ. Protective Effects of Tormentic Acid, a Major Component of Suspension Cultures of Eriobotrya japonica Cells, on Acetaminophen-Induced Hepatotoxicity in Mice. Molecules 2017; 22:molecules22050830. [PMID: 28524081 PMCID: PMC6154347 DOI: 10.3390/molecules22050830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
An acetaminophen (APAP) overdose can cause hepatotoxicity and lead to fatal liver damage. The hepatoprotective effects of tormentic acid (TA) on acetaminophen (APAP)-induced liver damage were investigated in mice. TA was intraperitoneally (i.p.) administered for six days prior to APAP administration. Pretreatment with TA prevented the elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil), total cholesterol (TC), triacylglycerol (TG), and liver lipid peroxide levels in APAP-treated mice and markedly reduced APAP-induced histological alterations in liver tissues. Additionally, TA attenuated the APAP-induced production of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6. Furthermore, the Western blot analysis showed that TA blocked the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as the inhibition of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) activation in APAP-injured liver tissues. TA also retained the superoxidase dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in the liver. These results suggest that the hepatoprotective effects of TA may be related to its anti-inflammatory effect by decreasing thiobarbituric acid reactive substances (TBARS), iNOS, COX-2, TNF-α, IL-1β, and IL-6, and inhibiting NF-κB and MAPK activation. Antioxidative properties were also observed, as shown by heme oxygenase-1 (HO-1) induction in the liver, and decreases in lipid peroxides and ROS. Therefore, TA may be a potential therapeutic candidate for the prevention of APAP-induced liver injury by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen-Ping Jiang
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Yoshikazu Matsuda
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Hiroshi Saito
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Naoto Uramaru
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Hui-Ya Ho
- Jen Li Biotech Company Ltd., Taiping District, Taichung 41143, Taiwan.
| | - Jin-Bin Wu
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
7
|
Feng X, Li DP, Zhang ZS, Chu ZY, Luan J. Microbial transformation of the anti-diabetic agent corosolic acid. Nat Prod Res 2014; 28:1879-86. [DOI: 10.1080/14786419.2014.955485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 2014; 36:215-32. [PMID: 24963701 DOI: 10.3109/07388551.2014.923986] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of plant tissue (including organ and cell) cultures for the production of secondary metabolites has been underway for more than three decades. Plant cell cultures with the production of high-value secondary metabolites are promising potential alternative sources for the production of pharmaceutical agents of industrial importance. Medicinal plant cell suspension cultures (MPCSC), which are characterized with the feature of fermentation with plant cell totipotency, could be a promising alternative "chemical factory". However, low productivity becomes an inevitable obstacle limiting further commercialization of MPCSC and the application to large-scale production is still limited to a few processes. This review generalizes and analyzes the recent progress of this bioproduction platform for the provision of medicinal chemicals and outlines a range of trials taken or underway to increase product yields from MPCSC. The scale-up of MPCSC, which could lead to an unlimited supply of pharmaceuticals, including strategies to overcome and solution of the associated challenges, is discussed.
Collapse
Affiliation(s)
- Wei Yue
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China .,b School of Life Science , East China Normal University , Shanghai , China
| | - Qian-Liang Ming
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Bing Lin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- c Faculty of Science, School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Byrom Street , Liverpool , UK , and
| | - Cheng-Jian Zheng
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Ting Han
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China .,d School of Forestry and Biotechnology , ZheJiang Agriculture & Forestry University , Lin'an , Hangzhou , China
| | - Lu-Ping Qin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| |
Collapse
|
9
|
Cell suspension culture of Eriobotrya japonica regulates the diabetic and hyperlipidemic signs of high-fat-fed mice. Molecules 2013; 18:2726-53. [PMID: 23455665 PMCID: PMC6270550 DOI: 10.3390/molecules18032726] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 01/22/2023] Open
Abstract
The present study investigates the anti-hyperlipidemic and antihyperglycemic effects and mechanism in high-fat (HF)-fed mice of cell suspension culture of Eriobotrya japonica (TA), which contains a great number of pentacyclic terpenoids. Firstly, C57BL/6J mice were randomly divided into two groups: the control (CON) group was fed with a low-fat diet (n = 9), whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was orally given TA or rosiglitazone or not for 4 weeks. Blood and visceral adipose tissue, liver tissue and skeletal muscle were examined. Treatment with TA reduced body weight gain, weights of white adipose tissue (WAT) (including epididymal, perirenal, mesenteric WAT and visceral fat), and hepatic triacylglycerol content significantly without affecting food intake in diet-induced diabetic mice. TA effectively prevented HF diet-induced increases in the levels of blood glucose, insulin, leptin and HOMA-IR index (p < 0.001, p < 0.05, p < 0.05, p < 0.01, respectively) and attenuated insulin resistance. Treatment with TA, adipocytes in the visceral depots showed a reduction in size. TA effectively significantly increased the protein contents of phosphorylation of AMPK-α (Thr172) both in liver and adipose tissue. It is shown that TA exhibits hypolipidemic effect in HF-fed mice by decreasing gene expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) 2, which catalyzes the final step in the synthesis of triglycerides, and antidiabetic properties occurred as a result of decreased hepatic glucose production via phosphenolpyruvate carboxykinase (PEPCK) down- regulation, improved insulin sensitization and TA (at 1.0 g/kg dose) decreased expression of hepatic and adipose 11-β-hydroxysteroid dehydroxygenase (11β-HSD1) gene, which contributed in attenuating diabetic state. Futhermore, TA at doses of 0.5 and 1.0 g/kg had serum lipid-lowering action characterized by the inhibition of DGAT 1 expression. Thus, amelioration of diabetic and dyslipidemic state by TA in HF-fed mice occurred by regulation of PEPCK, DGAT2 and AMPK phosphorylation.
Collapse
|