1
|
Choi HY, Choi JC, Kang YL, Ahn SH, Lee SW, Park SY, Song CS, Choi IS, Lee JB. Production of a chimeric porcine reproductive and respiratory syndrome virus (PRRSV)-2 vaccine using a lab-scale packed-bed bioreactor CelCradle. BMC Vet Res 2023; 19:105. [PMID: 37528389 PMCID: PMC10394776 DOI: 10.1186/s12917-023-03659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/14/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND We developed a MARC-145 cell culture and porcine reproductive and respiratory syndrome (PRRS) vaccine production using a novel CelCradle bioreactor. CelCradle is a packed-bed bioreactor capable of both batch and perfusion culture, and the operating parameters are easy to optimize. RESULTS In this study, CelCradle reached a maximum cell density of 8.94 × 105 cells/mL at 5 days post-seeding when seeded at 8.60 × 104 cells/mL (doubling time = 35.52 h). Inoculation of PRRS vaccine candidate, K418DM1.1, was performed at a multiplicity of infection (MOI) of 0.01 at 5 days post-seeding, which resulted in a high viral titer of 2.04 × 108 TCID50/mL and total viral load of 1.02 × 1011 TCID50/500 mL at 2 days post-infection (dpi). The multilayer cultivation system, BioFactory culture, yielded a higher doubling time (37.14 h) and lower viral titer (i.e., 8.15 × 107 TCID50/mL) compared to the CelCradle culture. Thus, the culture medium productivity of the CelCradle culture was 2-fold higher than that of the BioFactory culture. In the animal experiment, the CelCradle-produced vaccine induced high levels of neutralizing antibodies and effectively protected pigs against homologous challenge, as shown by the significantly lower levels of viremia at 1- and 7-days post-challenge (dpc) compared to the non-vaccinated pigs. CONCLUSIONS Overall, this study demonstrates that the CelCradle system is an economical platform for PRRS vaccine production.
Collapse
Grants
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- 818027-2 Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry
- KCAV Co., Ltd.
Collapse
Affiliation(s)
- Hwi-Yeon Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jong-Chul Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeong-Lim Kang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - So-Hyeun Ahn
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Won Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Seung-Yong Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - In-Soo Choi
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Joong-Bok Lee
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- KU Research Center for Zoonosis, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Srivastava V, Singh A, Jain GK, Ahmad FJ, Shukla R, Kesharwani P. Viral vectors as a promising nanotherapeutic approach against neurodegenerative disorders. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Kiesslich S, Kamen AA. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol Adv 2020; 44:107608. [PMID: 32768520 PMCID: PMC7405825 DOI: 10.1016/j.biotechadv.2020.107608] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
The Vero cell line is considered the most used continuous cell line for the production of viral vectors and vaccines. Historically, it is the first cell line that was approved by the WHO for the production of human vaccines. Comprehensive experimental data on the production of many viruses using the Vero cell line can be found in the literature. However, the vast majority of these processes is relying on the microcarrier technology. While this system is established for the large-scale manufacturing of viral vaccine, it is still quite complex and labor intensive. Moreover, scale-up remains difficult and is limited by the surface area given by the carriers. To overcome these and other drawbacks and to establish more efficient manufacturing processes, it is a priority to further develop the Vero cell platform by applying novel bioprocess technologies. Especially in times like the current COVID-19 pandemic, advanced and scalable platform technologies could provide more efficient and cost-effective solutions to meet the global vaccine demand. Herein, we review the prevailing literature on Vero cell bioprocess development for the production of viral vectors and vaccines with the aim to assess the recent advances in bioprocess development. We critically underline the need for further research activities and describe bottlenecks to improve the Vero cell platform by taking advantage of recent developments in the cell culture engineering field.
Collapse
Affiliation(s)
- Sascha Kiesslich
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
4
|
Large-scale microcarrier culture of HEK293T cells and Vero cells in single-use bioreactors. AMB Express 2019; 9:70. [PMID: 31127400 PMCID: PMC6534633 DOI: 10.1186/s13568-019-0794-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023] Open
Abstract
Gene therapy and viral vaccine are becoming attractive therapeutic options for the treatment of different malignant diseases. Viral vector productions are often using static culture vessels and small volume stainless steel bioreactors (SSB). However, the yield of each vessel can be relatively low and multiple vessels often need to be operated simultaneously. This significantly increases labor intensity, production costs, contamination risks, and limits its ability to be scaled up, thus, creating challenges to meet the quantities required once the gene therapy or viral vaccine medicine goes into clinical phases or to market. Single-use bioreactor combining with microcarrier provides a good option for viral vector and vaccine production. The goal of the present studies was to develop the microcarrier bead-to-bead expansion and transfer process for HEK293T cells and Vero cells and scale-up the cultures to 50–200 l single-use bioreactors. Following microcarrier bead-to-bead transfer, the peak cell concentration of HEK293T cells reached 1.5 × 106 cells/ml in XDR-50 bioreactor, whereas Vero cells reached 3.1 × 106 cells/ml and 3.3 × 106 cells/ml in XDR-50 bioreactor and XDR-200 bioreactor, respectively. The average growth rates reached 0.61–0.68/day. The successful microcarrier-based scaleup of these two cell lines in single-use bioreactors demonstrates potential large-scale production capabilities of viral vaccine and vector for current and future vaccines and gene therapy.
Collapse
|
5
|
Sağlam Metiner P, Can H, Ayyıldız Tamiş D, Karakavuk M, Kımız Geboloğlu I, Gülçe İz S, Atalay Şahar E, Değirmenci Döşkaya A, Gürüz Y, Deliloğlu Gürhan Sİ, Döşkaya M. The use of Toxoplasma gondii tachyzoites produced in HeLa cells adhered to Cytodex 1 microcarriers as antigen in serological assays: an application of microcarrier technology. Cytotechnology 2019; 71:91-105. [PMID: 30607647 DOI: 10.1007/s10616-018-0269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/13/2018] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii can infect nearly all warm-blooded animals, including humans. In the laboratory diagnosis of toxoplasmosis, serological tests have importance in detecting antibody response. Traditionally T. gondii tachyzoites grown in vivo are being used as an antigen source in serological assays. Currently, tachyzoites produced in vitro are being tested as an antigen source in order to decrease animal use. Microcarrier technology allowed us to grow anchorage-dependent host cells on microcarrier suspension in short time and approximately 10 times more than traditional flask technique. The ability of T. gondii tachyzoites to grow in host cells adhered to microcarriers has not been analyzed yet. In this study, we aimed to develop a novel in vitro culture method to produce T. gondii tachyzoites abundantly using HeLa cells adhered to Cytodex 1 microcarriers. Initially, the growth of HeLa cells adhered to Cytodex 1 was analyzed using RPMI 1640, DMEM, and EMEM. Next, HeLa cells with a concentration of 1 × 105 cells/ml and 2 × 105 cells/ml were adhered to Cytodex 1 and grown in spinner flasks. Then, T. gondii tachyzoites were inoculated with 1:1 and 2:1 cell:tachyzoite ratios to HeLa cells adhered to microcarriers in spinner flaks. During continuous production in spinner flasks, tachyzoites were harvested at the 2nd, 4th, and 7th day of culture and the quality of antigens produced from these tachyzoites were tested in ELISA and Western Blotting using sera of patients with toxoplasmosis. The optimization studies showed that finest HeLa inoculation value was 2 × 105 cells/ml using RPMI 1640, and the cell:tachyzoite ratio to obtain the highest tachyzoite yield (17.1 × 107) was 1:1 at the 4th day of inoculation. According to the results of ELISA comparing HeLa cell and mouse derived antigens, the highest correlation with mouse antigen was achieved at the 4th day of HeLa cell culture with 1:1 HeLa:tachyzoite ratio (P < 0.0001). The sensitivity and specificity ratios of ELISA were 100%. In addition, Western blotting banding patterns of the antigen derived at the 4th day of HeLa cell culture with 1:1 HeLa:tachyzoite ratio was comparable with mouse derived antigen. Overall, this novel methodology can be an alternative source of antigen in diagnostic assays, decrease animal use for antigen production, and contribute to the solution of ethical and economic problems.
Collapse
Affiliation(s)
- Pelin Sağlam Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey
| | - Hüseyin Can
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, Bornova, İzmir, Turkey.
| | - Duygu Ayyıldız Tamiş
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey
| | - Muhammet Karakavuk
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | - Ilgın Kımız Geboloğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey
| | - Sultan Gülçe İz
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey
| | - Esra Atalay Şahar
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | | | - Yüksel Gürüz
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | | | - Mert Döşkaya
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| |
Collapse
|
6
|
Preparation of microcarriers based on zein and their application in cell culture. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:863-9. [DOI: 10.1016/j.msec.2015.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/12/2015] [Accepted: 09/10/2015] [Indexed: 11/22/2022]
|
7
|
Malenovská H. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves. J Virol Methods 2015; 228:10-5. [PMID: 26562056 DOI: 10.1016/j.jviromet.2015.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 12/15/2022]
Abstract
Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses.
Collapse
Affiliation(s)
- Hana Malenovská
- Collection of Animal Pathogenic Microorganisms, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| |
Collapse
|
8
|
Druzinec D, Weiss K, Elseberg C, Salzig D, Kraume M, Pörtner R, Czermak P. Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM). Methods Mol Biol 2014; 1104:313-341. [PMID: 24297424 DOI: 10.1007/978-1-62703-733-4_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.
Collapse
Affiliation(s)
- Damir Druzinec
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Hilal-Alnaqbi A, Hu AYC, Zhang Z, Al-Rubeai M. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture. Biotechnol Appl Biochem 2013; 60:436-45. [PMID: 23701045 DOI: 10.1002/bab.1103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/24/2013] [Indexed: 11/09/2022]
Abstract
Chinese hamster ovary (CHO) cells producing β-galactosidase (β-gal) were successfully cultured on silicone-based porous microcarriers (ImmobaSil FS) in a 1 L stirred-tank perfusion bioreactor. We studied the growth, metabolism, and productivity of free and immobilized cells to understand cellular activity in immobilized conditions. CHO cells attached to ImmobaSil FS significantly better than to other microcarriers. Scanning electron microscope images showed that the CHO cells thoroughly colonized the porous surfaces of the ImmobaSil FS, exhibiting a spherical morphology with microvilli that extended to anchorage cells on the silicone surface. In perfusion culture, the concentration of the attached cells reached 8 × 10(8) cells/mL of carrier, whereas those that remained freely suspended reached 2 × 10(7) cells/mL medium. The β-gal concentration reached more than 5 unit/mL in perfusion culture, more than fivefold that of batch culture. The maximum concentration per microcarrier was proportional to the initial cell density. The specific growth rate, the specific β-gal production rate, the percentage of S phase, and the oxygen uptake rate were all relatively lower for immobilized cells than freely suspended cells in the same bioreactor, indicating that not only do cells survive and grow to a greater extent in a free suspension state, but they are also metabolically more active than viable cells inside the pores of the microcarriers.
Collapse
Affiliation(s)
- Ali Hilal-Alnaqbi
- School of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland; Faculty of Engineering, UAE University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
10
|
Somamoto S, Tabata Y. Effect of ProNectin F derivatives on cell attachment and proliferation. Acta Biomater 2013; 9:5194-200. [PMID: 22995404 DOI: 10.1016/j.actbio.2012.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/21/2012] [Accepted: 07/26/2012] [Indexed: 10/27/2022]
Abstract
ProNectin F (PnF) was chemically modified by introducing some functional groups to prepare various derivatives of primary amino (PnF-N₁), tertiary amino (PnF-N₃), quaternary ammonium (PnF-N₄), carboxyl (PnF-COOH) and sulfonyl groups (PnF-SO₃H). When C3H10T1/2 cells were cultured on non-treated dishes coated with the derivatives, the number of mesenchymal cells attached to the culture dishes increased for the coating with PnF-COOH and PnF-SO₃H, even at their low adsorption amount. The cytotoxicity was high for the coating of PnF-N₁ and PnF-N₄ compared with that of the PnF-N₃, PnF-COOH and PnF-SO₃H. The treatment with integrin α5 and αV antibodies suppressed the cell attachment to the dishes coated with PnF-COOH and PnF-SO₃H. The phosphorylation of extracellular signal-regulated kinase (ERK) was upregulated for cells attached to the dishes coated with PnF-COOH and PnF-SO₃H, indicating their enhanced proliferation. It is concluded that the chemical derivatization of PnF enhanced the ability of cell attachment and proliferation.
Collapse
|