1
|
Mizutani O, Kakizono D, Takahashi T, Mukai N, Fukuda H, Yamada O. The effect of Aspergillus luchuensis pectin methylesterase genes pmeA and pmeB on methanol production in sweet potato shochu. Biosci Biotechnol Biochem 2023:7143099. [PMID: 37183781 DOI: 10.1093/bbb/zbad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
To reduce the methanol content in sweet potato shochu, we studied the pectin methylesterase genes of the shochu-koji mold Aspergillus luchuensis. We found the following three homologs of pectin methyleseterase in the genome of A. luchuensis: pmeA, pmeB, and pmeC. Using pectin as a substrate, the methanol-producing activity of the recombinant of each gene expressed in A. luchuensis was examined and found to be present in recombinant PmeA and PmeB. Additionally, small-scale fermentation of sweet potato shochu using disruptions of pmeA and pmeA-pmeB in A. luchuensis (∆pmeA and ∆pmeApmeB) resulted in significant reduction of the methanol content. Taken together, we revealed that the A. luchuensis pmeA gene was mainly involved in methanol production in sweet potato shochu.
Collapse
Affiliation(s)
- Osamu Mizutani
- Department of Bioscience and Biotechnology, University of the Ryukyus, Nishihara, Okinawa, Japan
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Dararat Kakizono
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Toru Takahashi
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Nobuhiko Mukai
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Hisashi Fukuda
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Osamu Yamada
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
2
|
Chang PK. A Simple CRISPR/Cas9 System for Efficiently Targeting Genes of Aspergillus Section Flavi Species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger. Microbiol Spectr 2023; 11:e0464822. [PMID: 36651760 PMCID: PMC9927283 DOI: 10.1128/spectrum.04648-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. J Fungi (Basel) 2022; 8:jof8050467. [PMID: 35628723 PMCID: PMC9143064 DOI: 10.3390/jof8050467] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Aspergillus, a genus of filamentous fungi, is extensively distributed in nature and plays crucial roles in the decomposition of organic materials as an important environmental microorganism as well as in the traditional fermentation and food processing industries. Furthermore, due to their strong potential to secrete a large variety of hydrolytic enzymes and other natural products by manipulating gene expression and/or introducing new biosynthetic pathways, several Aspergillus species have been widely exploited as microbial cell factories. In recent years, with the development of next-generation genome sequencing technology and genetic engineering methods, the production and utilization of various homo-/heterologous-proteins and natural products in Aspergillus species have been well studied. As a newly developed genome editing technology, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has been used to edit and modify genes in Aspergilli. So far, the CRISPR/Cas9-based approach has been widely employed to improve the efficiency of gene modification in the strain type Aspergillus nidulans and other industrially important and pathogenic Aspergillus species, including Aspergillus oryzae, Aspergillus niger, and Aspergillus fumigatus. This review highlights the current development of CRISPR/Cas9-based genome editing technology and its application in basic research and the production of recombination proteins and natural products in the Aspergillus species.
Collapse
|
4
|
Futagami T. The white koji fungus Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem 2022; 86:574-584. [PMID: 35238900 DOI: 10.1093/bbb/zbac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
The white koji fungus, Aspergillus luchuensis mut. kawachii, is used in the production of shochu, a traditional Japanese distilled spirit. White koji fungus plays an important role in the shochu production process by supplying amylolytic enzymes such as α-amylase and glucoamylase. These enzymes convert starch contained in primary ingredients such as rice, barley, buckwheat, and sweet potato into glucose, which is subsequently utilized by the yeast Saccharomyces cerevisiae to produce ethanol. White koji fungus also secretes large amounts of citric acid, which lowers the pH of the shochu mash, thereby preventing the growth of undesired microbes and enabling stable production of shochu in relatively warm regions of Japan. This review describes the historical background, research tools, and recent advances in studies of the mechanism of citric acid production by white koji fungus.
Collapse
Affiliation(s)
- Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.,United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Tamano K, Yoshimi A. Metabolic Engineering Techniques to Increase the Productivity of Primary and Secondary Metabolites Within Filamentous Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:743070. [PMID: 37744120 PMCID: PMC10512283 DOI: 10.3389/ffunb.2021.743070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/20/2021] [Indexed: 09/26/2023]
Affiliation(s)
- Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Yamamoto N, Watarai N, Koyano H, Sawada K, Toyoda A, Kurokawa K, Yamada T. Analysis of genomic characteristics and their influence on metabolism in Aspergillus luchuensis albino mutants using genome sequencing. Fungal Genet Biol 2021; 155:103601. [PMID: 34224861 DOI: 10.1016/j.fgb.2021.103601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Black Aspergillus luchuensis and its white albino mutant are essential fungi for making alcoholic beverages in Japan. A large number of industrial strains have been created using novel isolation or gene/genome mutation techniques. Such mutations influence metabolic and phenotypic characteristics in industrial strains, but few comparative studies of inter-strain mutation have been conducted. We carried out comparative genome analyses of 8 industrial strains of A. luchuensis and A. kawachii IFO 4308, the latter being the first albino strain to be isolated. Phylogenetic analysis based on 8938 concatenated genes exposed the diversity of black koji strains and uniformity among albino industrial strains, suggesting that passaged industrial albino strains have more genetic mutations compared with strain IFO 4308 and black koji strains. Comparative analysis showed that the albino strains had mutations in genes not only for conidial pigmentation but also in those that encode N-terminal acetyltransferase A and annexin XIV-like protein. The results also suggest that some mutations may have emerged through subculturing of albino strains. For example, mutations in the genes for isocitrate lyase and sugar transporters were observed only in industrial albino strains. This implies that selective pressure for increasing enzyme activity or secondary metabolites may have influenced the mutation of genes associated with environmental stress responses in A. luchuensis albino strains. Our study clarifies hitherto unknown genetic and metabolic characteristics of A. luchuensis industrial strains and provides potential applications for comparative genome analysis for breeding koji strains.
Collapse
Affiliation(s)
- Nozomi Yamamoto
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naoki Watarai
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hitoshi Koyano
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazunori Sawada
- Corporate Strategy Office, Gurunavi, Inc., Toho Hibiya Building, 1-2-2 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Ken Kurokawa
- Department of Informatics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takuji Yamada
- Department of Life Science and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
7
|
Hayashi K, Kajiwara Y, Futagami T, Goto M, Takashita H. Making Traditional Japanese Distilled Liquor, Shochu and Awamori, and the Contribution of White and Black Koji Fungi. J Fungi (Basel) 2021; 7:517. [PMID: 34203379 PMCID: PMC8306306 DOI: 10.3390/jof7070517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022] Open
Abstract
The traditional Japanese single distilled liquor, which uses koji and yeast with designated ingredients, is called "honkaku shochu." It is made using local agricultural products and has several types, including barley shochu, sweet potato shochu, rice shochu, and buckwheat shochu. In the case of honkaku shochu, black koji fungus (Aspergillus luchuensis) or white koji fungus (Aspergillus luchuensis mut. kawachii) is used to (1) saccharify the starch contained in the ingredients, (2) produce citric acid to prevent microbial spoilage, and (3) give the liquor its unique flavor. In order to make delicious shochu, when cultivating koji fungus during the shochu production process, we use a unique temperature control method to ensure that these three important elements, which greatly affect the taste of the produced liquor, are balanced without any excess or deficiency. This review describes in detail the production method of honkaku shochu, a distilled spirit unique to Japan and whose market is expected to expand worldwide, with special attention paid to the koji fungi cultivation step. Furthermore, we describe the history of the koji fungi used today in the production of shochu, and we provide a thorough explanation of the characteristics of each koji fungi. We also report the latest research progress on this topic.
Collapse
Affiliation(s)
- Kei Hayashi
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| | - Yasuhiro Kajiwara
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan;
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hideharu Takashita
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| |
Collapse
|
8
|
Expression profiles of amylolytic genes in AmyR and CreA transcription factor deletion mutants of the black koji mold Aspergillus luchuensis. J Biosci Bioeng 2021; 132:321-326. [PMID: 34176737 DOI: 10.1016/j.jbiosc.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022]
Abstract
The black koji mold, Aspergillus luchuensis, which belongs to Aspergillus section Nigri, is used for the production of traditional Japanese spirits (shochu) mainly in the southern districts of Japan. This mold is known to produce amylolytic enzymes essential for shochu production; however, mechanisms regulating amylolytic gene expression in A. luchuensis have not been studied in as much detail as those in the yellow koji mold, Aspergillus oryzae. Here, we examined the gene expression profiles of deletion mutants of transcription factors orthologous to A. oryzae AmyR and CreA in A. luchuensis. A. luchuensis produces acid-unstable (AmyA) and acid-stable (AsaA) α-amylases. AmyA production and amyA gene expression were not influenced by amyR or creA deletion, indicating that amyA was constitutively expressed. In contrast, asaA gene expression was significantly down- and upregulated upon deletion of amyR and creA, respectively. Furthermore, the glaA and agdA genes (encoding glucoamylase and α-glucosidase, respectively) showed expression profiles similar to those of asaA. Thus, genes that play pivotal roles in starch saccharification, asaA, glaA, and agdA, were found to be regulated by AmyR and CreA. Moreover, despite previous reports on AsaA being only produced in solid-state culture, deletion of the ortholog of A. oryzae flbC, which is involved in the expression of the solid-state culture-specific genes, did not affect AsaA α-amylase activity, suggesting that FlbC was not associated with asaA expression.
Collapse
|
9
|
Tokashiki J, Toyama H, Mizutani O. Development of an itraconazole resistance gene as a dominant selectable marker for transformation in Aspergillus oryzae and Aspergillus luchuensis. Biosci Biotechnol Biochem 2021; 85:722-727. [PMID: 33624784 DOI: 10.1093/bbb/zbaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/05/2020] [Indexed: 11/14/2022]
Abstract
There are only a few combinations of antifungal drugs with known resistance marker genes in the Aspergillus species; therefore, the transformation of their wild-type strains is limited. In this study, to develop the novel dominant selectable marker for itraconazole, a fungal cell membrane synthesis inhibitor, we focused on Aspergillus luchuensis cyp51A (Alcyp51A), which encodes a 14-α-sterol demethylase related to the steroid synthesis pathway. We found that the G52R mutation in AlCyp51A and the replacement of the native promoter with a high-expression promoter contributed to itraconazole resistance in Aspergillus oryzae, designated as itraconazole resistant gene (itrA). The random integration in the A. luchuensis genome of the itrA marker cassette gene also allowed for transformation using itraconazole. Therefore, we succeed in developing a novel itraconazole resistance marker as a dominant selectable marker for transformation in A. oryzae and A. luchuensis.
Collapse
Affiliation(s)
- Jikian Tokashiki
- United Graduate School of Agricultural Science, Kagoshima University, Korimoto, Kagoshima-shi, Kagoshima, Japan
| | - Hirohide Toyama
- United Graduate School of Agricultural Science, Kagoshima University, Korimoto, Kagoshima-shi, Kagoshima, Japan.,Department of Bioscience and Biotechnology, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Osamu Mizutani
- United Graduate School of Agricultural Science, Kagoshima University, Korimoto, Kagoshima-shi, Kagoshima, Japan.,Department of Bioscience and Biotechnology, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
10
|
Yamada O, Nishibori N, Hayashi R, Arima T, Mizutani O. Construction of transcription factor gene deletion library of Aspergillus luchuensis. J GEN APPL MICROBIOL 2021; 67:118-123. [DOI: 10.2323/jgam.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | - Toshihide Arima
- Department of Life and Environmental Sciences, Prefectural University of Hiroshima
| | - Osamu Mizutani
- Department of Bioscience and Biotechnology, University of the Ryukyus
| |
Collapse
|
11
|
Kataoka R, Watanabe T, Hayashi R, Isogai A, Yamada O, Ogihara J. Awamori fermentation test and 1-octen-3-ol productivity analysis using fatty acid oxygenase disruptants of Aspergillus luchuensis. J Biosci Bioeng 2020; 130:489-495. [PMID: 32753307 DOI: 10.1016/j.jbiosc.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
1-Octen-3-ol is a major aroma component of awamori, a traditional distilled liquor produced in Okinawa Prefecture, Japan. As 1-octen-3-ol is thought to affect the sensory properties of awamori, it is important to fully characterize the compound's biosynthetic pathway and control mechanism. We previously reported that the fatty acid oxygenase ppoC (ppo: psi-produced oxygenase) of Aspergillus luchuensis is directly involved in the production of 1-octen-3-ol in rice koji (Kataoka et al., J. Biosci. Bioeng., 129, 192-198, 2020). In the present study, we constructed A. luchuensis ppoD disruptants to characterize the role of ppo genes in 1-octen-3-ol biosynthesis. A small-scale awamori fermentation test was performed using ppoA, ppoC, and ppoD single disruptants (ΔppoA, ΔppoC, and ΔppoD, respectively), along with the parent strain, ΔligD. 1-Octen-3-ol was not detected in the distillate prepared using the ΔppoC strain. We conclude that A. luchuensis ppoC is the only 1-octen-3-ol-producing factor in the awamori brewing process. Because ΔppoA and ΔppoD slightly enhanced 1-octen-3-ol productivity, these two genes may play a role in negatively controlling 1-octen-3-ol biosynthesis.
Collapse
Affiliation(s)
- Ryousuke Kataoka
- Applied Microbiology and Biotechnology Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Taisuke Watanabe
- Applied Microbiology and Biotechnology Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| | - Risa Hayashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Osamu Yamada
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Jun Ogihara
- Applied Microbiology and Biotechnology Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
12
|
Phenolic acid decarboxylase of Aspergillus luchuensis plays a crucial role in 4-vinylguaiacol production during awamori brewing. J Biosci Bioeng 2020; 130:352-359. [PMID: 32522405 DOI: 10.1016/j.jbiosc.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/24/2022]
Abstract
Aspergillus luchuensis has been used to produce awamori, a distilled liquor, in Okinawa, Japan. Vanillin, derived from ferulic acid (FA) in rice grains, is one of the characteristic flavors in aged and matured awamori, known as kusu. Decarboxylation of FA leads to the production of 4-vinylguaiacol (4-VG), which is converted to vanillin by natural oxidization. However, the mechanism underlying FA conversion to 4-VG has remained unknown in awamori brewing. In our previous studies, we showed that phenolic acid decarboxylase from A. luchuensis (AlPAD) could catalyze the conversion of FA to 4-VG, and that AlPAD is functionally expressed during koji making (Maeda et al., J. Biosci. Bioeng., 126, 162-168, 2018). In this study, to understand the contribution of AlPAD to 4-VG production in awamori brewing, we created an alpad disruptant (Δalpad) and compared its 4-VG productivity to that of the wild-type strain. The amount of 4-VG in the distillate of moromi prepared with the wild-type strain showed a significant increase, proportional to the time required for koji making. In the Δalpad strain, the amount of 4-VG was very small and remained unchanged during the koji making. In an awamori brewing test using koji harvested 42-66 h after inoculation, the contribution of AlPAD to 4-VG production was in the range of 88-94 %. These results indicate that AlPAD plays a key role in 4-VG production during awamori brewing.
Collapse
|
13
|
Tomimoto K, Osafune Y, Kakizono D, Han J, Mukai N. Isolation methods of high glycosidase-producing mutants of Aspergillus luchuensis and its mutated genes. Biosci Biotechnol Biochem 2019; 84:198-207. [PMID: 31566090 DOI: 10.1080/09168451.2019.1671788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
High glycosidase-producing strains of Aspergillus luchuensis were isolated from 2-deoxyglucose (2-DG) resistant mutants. α-Amylase, exo-α-1,4-glucosidase, β-glucosidase and β-xylosidase activity in the mutants was ~3, ~2, ~4 and ~2.5 times higher than the parental strain RIB2604 on koji-making conditions, respectively. Citric acid production and mycelia growth of the mutants, however, approximately halved to that of the parent. Compared to the parent, the alcohol yield from rice and sweet potato shochu mash of the mutant increased ~5.7% and 3.0%, respectively. The mutant strains showed significantly low glucose assimilability despite the fructose one was almost normal, and they had a single missense or nonsense mutation in the glucokinase gene glkA. The recombinant strain that was introduced at one of the mutations, glkA Q300K, demonstrated similar but not identical phenotypes to the mutant strain. This result indicates that glkA Q300K is one of the major mutations in 2-DG resistant strains.
Collapse
Affiliation(s)
- Kazuya Tomimoto
- Brewing Microbiology Division, National Research Institute of Brewing, Higashi-hiroshima, Japan
| | - Yukio Osafune
- Brewing Technology Division, National Research Institute of Brewing, Higashi-hiroshima, Japan
| | - Dararat Kakizono
- Brewing Technology Division, National Research Institute of Brewing, Higashi-hiroshima, Japan
| | - Jinshun Han
- Brewing Technology Division, National Research Institute of Brewing, Higashi-hiroshima, Japan
| | - Nobuhiko Mukai
- Brewing Technology Division, National Research Institute of Brewing, Higashi-hiroshima, Japan
| |
Collapse
|
14
|
Aspergillus luchuensis fatty acid oxygenase ppoC is necessary for 1-octen-3-ol biosynthesis in rice koji. J Biosci Bioeng 2019; 129:192-198. [PMID: 31585859 DOI: 10.1016/j.jbiosc.2019.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 11/21/2022]
Abstract
Awamori is a distilled spirit produced in Okinawa Prefecture, in southern Japan. Awamori contains the volatile organic compound 1-octen-3-ol, an important flavor component. Here, using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GCMS), we demonstrate that the black koji mold Aspergillus luchuensis produces 1-octen-3-ol in rice koji. To examine the role of the fatty acid oxygenase genes ppoA and ppoC in 1-octen-3-ol biosynthesis by A. luchuensis, we constructed ppoA and ppoC disruptants, ΔppoA and ΔppoC, respectively, via protoplast-PEG transformation. No clear differences in growth and conidiation were observed between the transformants and the parent strain. Volatile compounds in rice koji prepared using these gene disruptants were analyzed by SPME-GCMS. The amount of 1-octen-3-ol contained in koji produced by the ΔppoA strain was the same as that produced by the parental strain. In contrast, although the ΔppoC strain grew on the rice koji, 1-octen-3-ol was not detected. These results indicate that ppoC is involved in 1-octen-3-ol biosynthesis in A. luchuensis.
Collapse
|
15
|
Effect of pepA deletion and overexpression in Aspergillus luchuensis on sweet potato shochu brewing. J Biosci Bioeng 2019; 128:456-462. [PMID: 31031195 DOI: 10.1016/j.jbiosc.2019.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 11/20/2022]
Abstract
The mash of sweet potato shochu (Japanese distilled spirit) has a low pH value because the shochu koji mold produces a large amount of citric acid, which prevents germ contamination. In this study, we examined acid protease PepA's role in shochu production. For this purpose, we constructed pepA deletion and overexpression strains, using a black koji mold Aspergillus luchuensis RIB 2604 (NBRC 4314), with the Agrobacterium-mediated transformation method. The rice koji, prepared using a pepA disruptant (ΔpepA) and pepA-overexpressing strain (OEpepA), demonstrated 1/2- and 24-fold acid protease activities compared to that prepared using the parental strain, respectively. A small-scale test of sweet potato shochu brewing indicated the mash of ΔpepA had a lower amino acid concentration, while the mash of OEpepA had a higher concentration than that produced by the parental strain. Therefore, the mash amino acid concentrations were proportional to these strains' acid proteases activities. After distilling these mashes, we examined each shochu's aroma components. Shochu prepared using ΔpepA had relatively higher aroma components, such as alcohol and ester, compared to that prepared using parental strains. Meanwhile, shochu prepared using OEpepA had lower aroma components than that prepared using the parental strains. Based on these results, the amount of shochu aroma components showed an inverse correlation to the acid protease activity in the mash. Thus, the koji mold's acid protease content had a greater influence on the aroma qualities of sweet potato shochu. Accordingly, we have discussed the possibility of the breeding of shochu koji mold with acid protease as an indicator.
Collapse
|
16
|
Tokashiki J, Hayashi R, Yano S, Watanabe T, Yamada O, Toyama H, Mizutani O. Influence of α-1,3-glucan synthase gene agsE on protoplast formation for transformation of Aspergillus luchuensis. J Biosci Bioeng 2019; 128:129-134. [PMID: 30824179 DOI: 10.1016/j.jbiosc.2019.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 11/17/2022]
Abstract
Aspergillus luchuensis NBRC4314 recently underwent genome sequencing. We have not used the frequently used protoplast-polyethylene glycol (PEG) method but have used agrobacterium-mediated transformation (AMT) to genetically engineer this strain because it was difficult to generate protoplasts using commercial cell wall lytic enzymes. In this study, we initially investigated the various conditions for protoplast formation in A. luchuensis. We found that A. luchuensis protoplasts could be generated using a minimal medium for the preculture medium, a static culture for the preculture condition, and Yatalase and α-1,3-glucanase as cell-wall lytic enzymes. These protoplasts could then be transformed with the protoplast-PEG method. Because α-1,3-glucanase was needed to form protoplasts in A. luchuensis, we investigated the role of the α-1,3-glucan synthase gene agsE in protoplast formation, one of five α-1,3-glucan synthase genes in A. luchuensis and a homolog of the major α-1,3-glucan synthase agsB in Aspergillus nidulans. We disrupted agsE in A. luchuensis (ΔagsE) with AMT and found that protoplast formation in ΔagsE was comparable with protoplast formation in Aspergillus oryzae with Yatalase. The ΔagsE protoplasts were also competent for transformation with the protoplast-PEG method. Hence, agsE appears to inhibit protoplast formation in A. luchuensis.
Collapse
Affiliation(s)
- Jikian Tokashiki
- United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima 890-8580, Japan
| | - Risa Hayashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Taisuke Watanabe
- Applied Microbiology and Biotechnology Laboratory, Department of Chemistry and Lifescience, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Osamu Yamada
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Hirohide Toyama
- United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima 890-8580, Japan; Department of Bioscience and Biotechnology, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Osamu Mizutani
- United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima 890-8580, Japan; National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan; Department of Bioscience and Biotechnology, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
17
|
Qin X, Li R, Luo X, Lin Y, Feng JX. Deletion of ligD significantly improves gene targeting frequency in the lignocellulolytic filamentous fungus Penicillium oxalicum. Fungal Biol 2017; 121:615-623. [PMID: 28606356 DOI: 10.1016/j.funbio.2017.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/29/2017] [Accepted: 04/17/2017] [Indexed: 01/05/2023]
Abstract
To improve the gene targeting frequency (GTF) in the lignocellulolytic filamentous fungus Penicillium oxalicum HP7-1, the non-homologous end-joining (NHEJ) gene ligD was deleted. The obtained PoligD deletion mutant ΔPoligD showed no apparent defect in cellulase production, growth rate, and sensitivity towards osmotic stress and mutagen ethyl methanesulphonate (EMS), while increased sensitivity to high concentrations of methyl methanesulfonate (MMS). Deletion of PoligD gene resulted in significantly increased GTFs at three different loci in P. oxalicum, which are even higher than those in Poku70 deletion mutant. The GTF in ΔPoligD at PoargB (reached 97 %) and PoagaA (reached 90 %) loci increased 5.1- and 1.2-fold compared with that in wild-type strain (WT), while at the Podpp4 locus GTF was up to 27 % in ΔPoligD but close to 0 % in WT, with 0.5 kb homologous flanking regions. Furthermore, the argB and agaA nutritional selection in P. oxalicum was demonstrated and the PoargB and PoagaA genes could be used as selective markers in this fungus. Thus, the PoligD deletion mutant can be an important tool for the functional analysis of genes in P. oxalicum.
Collapse
Affiliation(s)
- Xiulin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Ruijie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Xiang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Yanmei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
18
|
Yamada O, Machida M, Hosoyama A, Goto M, Takahashi T, Futagami T, Yamagata Y, Takeuchi M, Kobayashi T, Koike H, Abe K, Asai K, Arita M, Fujita N, Fukuda K, Higa KI, Horikawa H, Ishikawa T, Jinno K, Kato Y, Kirimura K, Mizutani O, Nakasone K, Sano M, Shiraishi Y, Tsukahara M, Gomi K. Genome sequence of Aspergillus luchuensis NBRC 4314. DNA Res 2016; 23:507-515. [PMID: 27651094 PMCID: PMC5144674 DOI: 10.1093/dnares/dsw032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/02/2016] [Indexed: 12/03/2022] Open
Abstract
Awamori is a traditional distilled beverage made from steamed Thai-Indica rice in Okinawa, Japan. For brewing the liquor, two microbes, local kuro (black) koji mold Aspergillus luchuensis and awamori yeast Saccharomyces cerevisiae are involved. In contrast, that yeasts are used for ethanol fermentation throughout the world, a characteristic of Japanese fermentation industries is the use of Aspergillus molds as a source of enzymes for the maceration and saccharification of raw materials. Here we report the draft genome of a kuro (black) koji mold, A. luchuensis NBRC 4314 (RIB 2604). The total length of nonredundant sequences was nearly 34.7 Mb, comprising approximately 2,300 contigs with 16 telomere-like sequences. In total, 11,691 genes were predicted to encode proteins. Most of the housekeeping genes, such as transcription factors and N-and O-glycosylation system, were conserved with respect to Aspergillus niger and Aspergillus oryzae An alternative oxidase and acid-stable α-amylase regarding citric acid production and fermentation at a low pH as well as a unique glutamic peptidase were also found in the genome. Furthermore, key biosynthetic gene clusters of ochratoxin A and fumonisin B were absent when compared with A. niger genome, showing the safety of A. luchuensis for food and beverage production. This genome information will facilitate not only comparative genomics with industrial kuro-koji molds, but also molecular breeding of the molds in improvements of awamori fermentation.
Collapse
Affiliation(s)
- Osamu Yamada
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Masayuki Machida
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba, Ibaraki 305-8566, Japan
| | - Akira Hosoyama
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Masatoshi Goto
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Toru Takahashi
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Taiki Futagami
- Faculty of Agriculture, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Youhei Yamagata
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Michio Takeuchi
- Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | | | - Hideaki Koike
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, AIST, Tsukuba, Ibaraki 305-8566, Japan
| | - Keietsu Abe
- Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | - Kiyoshi Asai
- Computational Biology Research Center, AIST, Koto-ku, Tokyo 135-0064, Japan
| | - Masanori Arita
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Nobuyuki Fujita
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Kazuro Fukuda
- Asahi Breweries, LTD, Sumida-ku, Tokyo 130-8602, Japan
| | - Ken-Ichi Higa
- Industrial Technology Center, Okinawa Prefectural Government, Uruma, Okinawa 904-2234, Japan
| | - Hiroshi Horikawa
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | | | - Koji Jinno
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Yumiko Kato
- National Institute of Technology and Evaluation, Shibuya-ku, Tokyo 151-0066, Japan
| | - Kohtaro Kirimura
- Department of Applied Chemistry, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Osamu Mizutani
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kaoru Nakasone
- Kinki University Faculty of Engineering, Higashi-hiroshima, Hiroshima 739-2116, Japan
| | - Motoaki Sano
- Kanazawa Institute of Technology, Nonoichi, Ishikawa 921-8501, Japan
| | - Yohei Shiraishi
- National Research Institute of Brewing, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | | | - Katsuya Gomi
- Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| |
Collapse
|
19
|
Kadooka C, Onitsuka S, Uzawa M, Tashiro S, Kajiwara Y, Takashita H, Okutsu K, Yoshizaki Y, Takamine K, Goto M, Tamaki H, Futagami T. Marker recycling system using the sC gene in the white koji mold, Aspergillus luchuensis mut. kawachii. J GEN APPL MICROBIOL 2016; 62:160-3. [PMID: 27211832 DOI: 10.2323/jgam.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chihiro Kadooka
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kikukawa H, Sakuradani E, Ando A, Okuda T, Ochiai M, Shimizu S, Ogawa J. Disruption of lig4 improves gene targeting efficiency in the oleaginous fungus Mortierella alpina 1S-4. J Biotechnol 2015; 208:63-9. [PMID: 26052021 DOI: 10.1016/j.jbiotec.2015.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 11/28/2022]
Abstract
The oil-producing zygomycete Mortierella alpina 1S-4 is known to accumulate beneficial polyunsaturated fatty acids. We identified the lig4 gene that encodes for a DNA ligase 4 homolog, which functions to repair double strand breaks by non-homologous end joining. We disrupted the lig4 gene to improve the gene targeting efficiency in M. alpina. The M. alpina 1S-4 Δlig4 strains showed no defect in vegetative growth, formation of spores, and fatty acid production, but exhibited high sensitivity to methyl methansulfonate, an agent that causes DNA double-strand breaks. Importantly, gene replacement of ura5 marker by CBXB marker occurred in 67% of Δlig4 strains and the gene targeting efficiency was 21-fold greater than that observed in disruption of the lig4 gene in the M. alpina 1S-4 host strain. Further metabolic engineering of the Δlig4 strains is expected to result in strains that produce higher levels of rare and beneficial polyunsaturated fatty acids and contribute to basic research on the zygomycete.
Collapse
Affiliation(s)
- Hiroshi Kikukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eiji Sakuradani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan; Institute of Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan; Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomoyo Okuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Misa Ochiai
- Research Institute, Suntory Global Innovation Center Ltd., 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan
| | - Sakayu Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan; Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto Gakuen University, 1-1 Nanjo, Sogabe, Kameoka 621-8555, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan; Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
21
|
Kikukawa H, Sakuradani E, Nakatani M, Ando A, Okuda T, Sakamoto T, Ochiai M, Shimizu S, Ogawa J. Gene targeting in the oil-producing fungus Mortierella alpina 1S-4 and construction of a strain producing a valuable polyunsaturated fatty acid. Curr Genet 2015; 61:579-89. [PMID: 25782448 DOI: 10.1007/s00294-015-0481-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/26/2015] [Accepted: 02/28/2015] [Indexed: 11/26/2022]
Abstract
To develop an efficient gene-targeting system in Mortierella alpina 1S-4, we identified the ku80 gene encoding the Ku80 protein, which is involved in the nonhomologous end-joining pathway in genomic double-strand break (DSB) repair, and constructed ku80 gene-disrupted strains via single-crossover homologous recombination. The Δku80 strain from M. alpina 1S-4 showed no negative effects on vegetative growth, formation of spores, and fatty acid productivity, and exhibited high sensitivity to methyl methanesulfonate, which causes DSBs. Dihomo-γ-linolenic acid (DGLA)-producing strains were constructed by disruption of the Δ5-desaturase gene, encoding a key enzyme of bioconversion of DGLA to ARA, using the Δku80 strain as a host strain. The significant improvement of gene-targeting efficiency was not observed by disruption of the ku80 gene, but the construction of DGLA-producing strain by disruption of the Δ5-desaturase gene was succeeded using the Δku80 strain as a host strain. This report describes the first study on the identification and disruption of the ku80 gene in zygomycetes and construction of a DGLA-producing transformant using a gene-targeting system in M. alpina 1S-4.
Collapse
Affiliation(s)
- Hiroshi Kikukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Eiji Sakuradani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute of Technology and Science, Tokushima University, 2-1 Minami-josanjima, Tokushima, 770-8506, Japan
| | - Masato Nakatani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tomoyo Okuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takaiku Sakamoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Misa Ochiai
- Research Institute, Suntory Global Innovation Center Ltd., 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka, 618-8503, Japan
| | - Sakayu Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto Gakuen University, 1-1 Nanjo, Sogabe, Kameoka, 621-8555, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
- Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
22
|
Takahashi T, Tanaka T, Tsushima Y, Muragaki K, Uehara K, Takeuchi S, Maeda H, Yamagata Y, Nakayama M, Yoshimi A, Abe K. Ionic interaction of positive amino acid residues of fungal hydrophobin RolA with acidic amino acid residues of cutinase CutL1. Mol Microbiol 2015; 96:14-27. [DOI: 10.1111/mmi.12915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Toru Takahashi
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Takumi Tanaka
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Yusei Tsushima
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Kimihide Muragaki
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Kenji Uehara
- Laboratory of Enzymology; Department of Molecular and Cell Biology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Shunsuke Takeuchi
- Laboratory of Enzymology; Department of Molecular and Cell Biology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Hiroshi Maeda
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Department of Applied Molecular Biology and Biochemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo 183-8509 Japan
| | - Youhei Yamagata
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Department of Applied Molecular Biology and Biochemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo 183-8509 Japan
| | - Mayumi Nakayama
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Akira Yoshimi
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| | - Keietsu Abe
- Microbial Genomics Laboratory; New Industry Creation Hatchery Center; Tohoku University; Sendai Miyagi 981-8555 Japan
- Laboratory of Applied Microbiology; Department of Microbial Biotechnology; Graduate School of Agricultural Science; Tohoku University; Sendai Miyagi 981-8555 Japan
| |
Collapse
|
23
|
Tanaka T, Tanabe H, Uehara K, Takahashi T, Abe K. Involvement of hydrophobic amino acid residues in C7–C8 loop of Aspergillus oryzae hydrophobin RolA in hydrophobic interaction between RolA and a polyester. Biosci Biotechnol Biochem 2014; 78:1693-9. [DOI: 10.1080/09168451.2014.932684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Hydrophobins are amphipathic secretory proteins with eight conserved cysteine residues and are ubiquitous among filamentous fungi. The Cys3–Cys4 and Cys7–Cys8 loops of hydrophobins are thought to form hydrophobic segments involved in adsorption of hydrophobins on hydrophobic surfaces. When the fungus Aspergillus oryzae is grown in a liquid medium containing the polyester polybutylene succinate-co-adipate (PBSA), A. oryzae produces hydrophobin RolA, which attaches to PBSA. Here, we analyzed the kinetics of RolA adsorption on PBSA by using a PBSA pull-down assay and a quartz crystal microbalance (QCM) with PBSA-coated electrodes. We constructed RolA mutants in which hydrophobic amino acids in the two loops were replaced with serine, and we examined the kinetics of mutant adsorption on PBSA. QCM analysis revealed that mutants with replacements in the Cys7–Cys8 loop had lower affinity than wild-type RolA for PBSA, suggesting that this loop is involved in RolA adsorption on PBSA.
Collapse
Affiliation(s)
- Takumi Tanaka
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hiroki Tanabe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenji Uehara
- Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Toru Takahashi
- Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Microbial Genomics Laboratory, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Efficient gene targeting in ligase IV-deficient Monascus ruber M7 by perturbing the non-homologous end joining pathway. Fungal Biol 2014; 118:846-54. [PMID: 25209642 DOI: 10.1016/j.funbio.2014.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/21/2022]
Abstract
Inactivating the non-homologous end joining (NHEJ) pathway is a well established method to increase gene replacement frequency (GRF) in filamentous fungi because NHEJ is predominant for the repair of DNA double strand breaks (DSBs), while gene targeting is based on homologous recombination (HR). DNA ligase IV, a component of the NHEJ system, is strictly required for the NHEJ in Saccharomyces cerevisiae and Neurospora crassa. To enhance the GRF in Monascus ruber M7, we deleted the Mrlig4 gene encoding a homolog of N. crassa DNA ligase IV. The obtained mutant (MrΔlig4) showed no apparent defects in vegetative growth, colony phenotype, microscopic morphology, spore yield, and production of Monascus pigments and citrinin compared with the wild-type strain (M. ruber M7). Gene targeting of ku70 and triA genes revealed that GRF in the MrΔlig4 strain increased four-fold compared with that in the wild-type strain, reached 68 % and 85 %, respectively. Thus, the MrΔlig4 strain is a promising host for efficient genetic manipulation. In addition, the MrΔlig4 strain is more sensitive than M. ruber M7 to a DNA-damaging agent, methyl methanesulfonate.
Collapse
|
25
|
Kobayashi K, Hattori T, Honda Y, Kirimura K. Oxalic acid production by citric acid-producing Aspergillus niger overexpressing the oxaloacetate hydrolase gene oahA. J Ind Microbiol Biotechnol 2014; 41:749-56. [PMID: 24615146 DOI: 10.1007/s10295-014-1419-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/11/2014] [Indexed: 12/01/2022]
Abstract
The filamentous fungus Aspergillus niger is used worldwide in the industrial production of citric acid. However, under specific cultivation conditions, citric acid-producing strains of A. niger accumulate oxalic acid as a by-product. Oxalic acid is used as a chelator, detergent, or tanning agent. Here, we sought to develop oxalic acid hyperproducers using A. niger as a host. To generate oxalic acid hyperproducers by metabolic engineering, transformants overexpressing the oahA gene, encoding oxaloacetate hydrolase (OAH; EC 3.7.1.1), were constructed in citric acid-producing A. niger WU-2223L as a host. The oxalic acid production capacity of this strain was examined by cultivation of EOAH-1 under conditions appropriate for oxalic acid production with 30 g/l glucose as a carbon source. Under all the cultivation conditions tested, the amount of oxalic acid produced by EOAH-1, a representative oahA-overexpressing transformant, exceeded that produced by A. niger WU-2223L. A. niger WU-2223L and EOAH-1 produced 15.6 and 28.9 g/l oxalic acid, respectively, during the 12-day cultivation period. The yield of oxalic acid for EOAH-1 was 64.2 % of the maximum theoretical yield. Our method for oxalic acid production gave the highest yield of any study reported to date. Therefore, we succeeded in generating oxalic acid hyperproducers by overexpressing a single gene, i.e., oahA, in citric acid-producing A. niger as a host.
Collapse
Affiliation(s)
- Keiichi Kobayashi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | | | | | | |
Collapse
|
26
|
|
27
|
Tashiro S, Futagami T, Wada S, Kajiwara Y, Takashita H, Omori T, Takahashi T, Yamada O, Takegawa K, Goto M. Construction of a ligD disruptant for efficient gene targeting in white koji mold, Aspergillus kawachii. J GEN APPL MICROBIOL 2013; 59:257-60. [DOI: 10.2323/jgam.59.257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol 2012; 78:5341-52. [PMID: 22636004 DOI: 10.1128/aem.01234-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleurotus ostreatus (the oyster mushroom) and other white rot filamentous basidiomycetes are key players in the global carbon cycle. P. ostreatus is also a commercially important edible fungus with medicinal properties and is important for biotechnological and environmental applications. Efficient gene targeting via homologous recombination (HR) is a fundamental tool for facilitating comprehensive gene function studies. Since the natural HR frequency in Pleurotus transformations is low (2.3%), transformed DNA is predominantly integrated ectopically. To overcome this limitation, a general gene targeting system was developed by producing a P. ostreatus PC9 homokaryon Δku80 strain, using carboxin resistance complemented by the development of a protocol for hygromycin B resistance protoplast-based DNA transformation and homokaryon isolation. The Δku80 strain exhibited exclusive (100%) HR in the integration of transforming DNA, providing a high efficiency of gene targeting. Furthermore, the Δku80 strains produced showed a phenotype similar to that of the wild-type PC9 strain, with similar growth fitness, ligninolytic functionality, and capability of mating with the incompatible strain PC15 to produce a dikaryon which retained its resistance to the corresponding selection and was capable of producing typical fruiting bodies. The applicability of this system is demonstrated by inactivation of the versatile peroxidase (VP) encoded by mnp4. This enzyme is part of the ligninolytic system of P. ostreatus, being one of the nine members of the manganese-peroxidase (MnP) gene family, and is the predominantly expressed VP in Mn(2+)-deficient media. mnp4 inactivation provided a direct proof that mnp4 encodes a key VP responsible for the Mn(2+)-dependent and Mn(2+)-independent peroxidase activity under Mn(2+)-deficient culture conditions.
Collapse
|