1
|
Huang WW, Ge XY, Huang Y, Chai XT, Zhang L, Zhang YX, Deng LN, Liu CQ, Xu H, Gao J. High-yield strain of fusidic acid obtained by atmospheric and room temperature plasma mutagenesis and the transcriptional changes involved in improving its production in fungus Fusidium coccineum. J Appl Microbiol 2020; 130:405-415. [PMID: 32734700 DOI: 10.1111/jam.14797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/01/2020] [Accepted: 07/21/2020] [Indexed: 11/28/2022]
Abstract
AIMS To obtain the high-yield strain of fusidic acid, which is produced from fungus Fusidium coccineum and is the only fusidane-type antibiotic that has been used clinically, and confirm the changes in the transcription levels involved in increasing its production. METHODS AND RESULTS By using the atmospheric and room temperature plasma mutagenesis technology, a high-yield mutant strain of fusidic acid-producing fungus F. coccineum was obtained. Using the genomic analysis of the original strain based on biosynthetic pathways of ergosterol and helvolic acid, we demonstrate that the pathway involved in the biosynthesis of 2,3-oxidosqualene from acetyl coenzyme A was shared by fusidic acid and ergosterol, and fusidic acid was finally synthesized by the catalysis of multiple cytochrome P450s and short-chain dehydrogenase/reductase from 2,3-oxidosqualene. Then, through the transcriptomic analysis of the original and mutagenized strain, it revealed that the proposed pathway from sucrose to fusidic acid was the most significantly up-regulated in the transcription levels of the mutant strain. CONCLUSIONS The changes in the transcription levels of fusidic acid during its biosynthesis might result in high-yield of fusidic acid in the mutant strain. This is the first report on the whole biosynthetic pathway of fusidic acid in F. coccineum. SIGNIFICANCE AND IMPACT OF THE STUDY This study obtain the genetic basis for the biosynthesis of fusidic acid which could be beneficial for the molecular modifications of F. coccineum to further increase its yield by fermentation in future, and established the foundation to reveal the mechanism of the high-yield of the mutant strain.
Collapse
Affiliation(s)
- W W Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China.,School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - X Y Ge
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Y Huang
- Joyang Laboratories, Yancheng, China
| | - X T Chai
- Joyang Laboratories, Yancheng, China
| | - L Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Y X Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - L N Deng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - C Q Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - H Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - J Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
2
|
Li J, Zhen W, Long D, Ding L, Gong A, Xiao C, Jiang W, Liu X, Zhou T, Huang L. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome. PLoS One 2016; 11:e0164235. [PMID: 27764127 PMCID: PMC5072632 DOI: 10.1371/journal.pone.0164235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/21/2016] [Indexed: 01/09/2023] Open
Abstract
Pseudostellaria heterophylla (Miq.) Pax is a mild tonic herb widely cultivated in the Southern part of China. The tuberous roots of P. heterophylla accumulate high levels of secondary metabolism products of medicinal value such as saponins, flavonoids, and isoquinoline alkaloids. Despite numerous studies on the pharmacological importance and purification of these compounds in P. heterophylla, their biosynthesis is not well understood. In the present study, we used Illumina HiSeq 4000 sequencing platform to sequence the RNA from flowers, leaves, stem, root cortex and xylem tissues of P. heterophylla. We obtained 616,413,316 clean reads that we assembled into 127, 334 unique sequences with an N50 length of 951 bp. Among these unigenes, 53,184 unigenes (41.76%) were annotated in a public database and 39, 795 unigenes were assigned to 356 KEGG pathways; 23,714 unigenes (8.82%) had high homology with the genes from Beta vulgaris. We discovered 32, 095 DEGs in different tissues and performed GO and KEGG enrichment analysis. The most enriched KEGG pathway of secondary metabolism showed up-regulated expression in tuberous roots as compared with the ground parts of P. heterophylla. Moreover, we identified 72 candidate genes involved in triterpenoids saponins biosynthesis in P. heterophylla. The expression profiles of 11 candidate unigenes were analyzed by quantitative real-time PCR (RT-qPCR). Our study established a global transcriptome database of P. heterophylla for gene identification and regulation. We also identified the candidate unigenes involved in triterpenoids saponins biosynthesis. Our results provide an invaluable resource for the secondary metabolites and physiological processes in different tissues of P. heterophylla.
Collapse
Affiliation(s)
- Jun Li
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Wei Zhen
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Dengkai Long
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Ling Ding
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Anhui Gong
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Chenghong Xiao
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Weike Jiang
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Xiaoqing Liu
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Tao Zhou
- Guiyang University of Chinese Medicine, Guiyang 550025, China.,National Engineering Research Center of Miao's Medicines, Guiyang 550025, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|