1
|
Malani H, Kumar S, Rathore AS. Elucidation of Mg 2+ induced size and charge heterogeneity in monoclonal antibody therapeutics. Int J Biol Macromol 2024; 283:137736. [PMID: 39551289 DOI: 10.1016/j.ijbiomac.2024.137736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Changes in charge variant profile are known to affect mAb stability and vice versa. This report elucidates the effects of magnesium metal (0.5 mM Mg2+) on trastuzumab (IgG1 antibody). Mg2+ is often used as an excipient (50-100 mM) and lubricant (5-10 % w/w) in biopharmaceutical formulations. Analytical size-exclusion chromatography (SEC) and cation-exchange chromatography (CEX) coupled with mass spectrometry (MS) were used to evaluate the size and charge heterogeneity in the thermal and metal stressed samples and compared to the control sample (room temperature). The present study unveils that presence of Mg2+ significantly increases the rate of aggregation with 9 % aggregation observed in Mg2+ stressed samples as compared to that from thermal stress (~2 %) or control sample (<1 %). Similarly, a 2-fold elevation in acidic variants was observed both in presence of Mg2+ and thermal stress, when contrasted with the control sample. Application of stress also led to the formation of 17 additional chemical modifications (7 due to thermal stress and 10 due to Mg2+ stress) which were not identified in control, predominantly involving deamidation, isomerization of aspartic acid, oxidation, and succinimide modifications. The results indicate the need for a detailed analysis of the impact of presence of metals in biotherapeutic formulations.
Collapse
Affiliation(s)
- Himanshu Malani
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Marschall L, Gottimukkala CB, Kayal B, Veeraraghavan VM, Mandal SK, Bandyopadhyay S, Herwig C. Temperature Upshifts in Mammalian Cell Culture: A Suitable Strategy for Biosimilar Monoclonal Antibodies? Bioengineering (Basel) 2023; 10:1149. [PMID: 37892879 PMCID: PMC10603922 DOI: 10.3390/bioengineering10101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Temperature downshifts are the gold standard when setting up control strategies for mammalian cell culture processes. These shifts are performed to prolong production phases and attain heightened levels of productivity. For the development of biosimilars, however, the bottleneck is in achieving a prespecified product quality. In a late-stage development project, we investigated the impact of temperature shifts and other process parameters with the aim of optimizing the glycosylation profile of a monoclonal antibody (mAb). We applied a design of experiments approach on a 3 L scale. The optimal glycosylation profile was achieved when performing a temperature upshift from 35.8 °C to 37 °C. Total afucosylated glycan (TAF) decreased by 1.2%, and galactosylated glycan species (GAL) increased by up to 4.5%. The optimized control strategy was then successfully taken to the manufacturing scale (1000 L). By testing two sets of set points at the manufacturing scale, we demonstrated that the statistical models predicting TAF and GAL trained with small-scale data are representative of the manufacturing scale. We hope this study encourages researchers to widen the screening ranges in process development and investigate whether temperature upshifts are also beneficial for other mAbs.
Collapse
Affiliation(s)
- Lukas Marschall
- TU Wien, Faculty of Technical Chemistry, Research Unit Biochemical Engineering, Gumpendorferstrasse 1a, 1060 Vienna, Austria
- Körber Pharma Austria GmbH, Mariahilfer Straße 88A/1/9, 1070 Vienna, Austria
| | - Chitti Babu Gottimukkala
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Biswajit Kayal
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Veerabhadra Madurai Veeraraghavan
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Samir Kumar Mandal
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Suman Bandyopadhyay
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Christoph Herwig
- TU Wien, Faculty of Technical Chemistry, Research Unit Biochemical Engineering, Gumpendorferstrasse 1a, 1060 Vienna, Austria
- Körber Pharma Austria GmbH, Mariahilfer Straße 88A/1/9, 1070 Vienna, Austria
| |
Collapse
|
3
|
Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, Wang D, Katiyar A, Xiang T, Liu H. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies (Basel) 2022; 11:73. [PMID: 36412839 PMCID: PMC9703962 DOI: 10.3390/antib11040073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Since the first approval of the anti-CD3 recombinant monoclonal antibody (mAb), muromonab-CD3, a mouse antibody for the prevention of transplant rejection, by the US Food and Drug Administration (FDA) in 1986, mAb therapeutics have become increasingly important to medical care. A wealth of information about mAbs regarding their structure, stability, post-translation modifications, and the relationship between modification and function has been reported. Yet, substantial resources are still required throughout development and commercialization to have appropriate control strategies to maintain consistent product quality, safety, and efficacy. A typical feature of mAbs is charge heterogeneity, which stems from a variety of modifications, including modifications that are common to many mAbs or unique to a specific molecule or process. Charge heterogeneity is highly sensitive to process changes and thus a good indicator of a robust process. It is a high-risk quality attribute that could potentially fail the specification and comparability required for batch disposition. Failure to meet product specifications or comparability can substantially affect clinical development timelines. To mitigate these risks, the general rule is to maintain a comparable charge profile when process changes are inevitably introduced during development and even after commercialization. Otherwise, new peaks or varied levels of acidic and basic species must be justified based on scientific knowledge and clinical experience for a specific molecule. Here, we summarize the current understanding of mAb charge variants and outline risk-based control strategies to support process development and ultimately commercialization.
Collapse
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, 74160 Saint-Julien-en-Genevois, France
| | - Christine Nowak
- Protein Characterization, Alexion AstraZeneca Rare Disease, 100 College St., New Haven, CT 06510, USA
| | - Deborah Meshulam
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Kristina Reynolds
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - David Chen
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Dennis B. Pacardo
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Samantha B. Nicholls
- Protein Sciences, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Gregory J. Carven
- Research, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Zhenyu Gu
- Jasper Therapeutics, Inc., 2200 Bridge Pkwy Suite 102, Redwood City, CA 94065, USA
| | - Jing Fang
- Biological Drug Discovery, Biogen, 225 Binney St., Cambridge, MA 02142, USA
| | - Dongdong Wang
- Global Biologics, Takeda Pharmaceuticals, 300 Shire Way, Lexington, MA 02421, USA
| | - Amit Katiyar
- CMC Technical Operations, Magenta Therapeutics, 100 Technology Square, Cambridge, MA 02139, USA
| | - Tao Xiang
- Downstream Process and Analytical Development, Boston Institute of Biotechnology, 225 Turnpike Rd., Southborough, MA 01772, USA
| | - Hongcheng Liu
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnol Adv 2021; 54:107831. [PMID: 34480988 DOI: 10.1016/j.biotechadv.2021.107831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used mammalian host cells for the commercial production of therapeutic proteins. Fed-batch culture is widely used to produce therapeutic proteins, including monoclonal antibodies, because of its operational simplicity and high product titer. Despite technical advances in the development of culture media and cell cultures, it is still challenging to maintain high productivity in fed-batch cultures while also ensuring good product quality. In this review, factors that affect the quality attributes of therapeutic proteins in recombinant CHO (rCHO) cell culture, such as glycosylation, charge variation, aggregation, and degradation, are summarized and categorized into three groups: culture environments, chemical additives, and host cell proteins accumulated in culture supernatants. Understanding the factors that influence the therapeutic protein quality in rCHO cell culture will facilitate the development of large-scale, high-yield fed-batch culture processes for the production of high-quality therapeutic proteins.
Collapse
|
5
|
Khaleghi MK, Savizi ISP, Lewis NE, Shojaosadati SA. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnol J 2021; 16:e2100212. [PMID: 34390201 DOI: 10.1002/biot.202100212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/06/2022]
Abstract
Recent noteworthy advances in the development of high-performing microbial and mammalian strains have enabled the sustainable production of bio-economically valuable substances such as bio-compounds, biofuels, and biopharmaceuticals. However, to obtain an industrially viable mass-production scheme, much time and effort are required. The robust and rational design of fermentation processes requires analysis and optimization of different extracellular conditions and medium components, which have a massive effect on growth and productivity. In this regard, knowledge- and data-driven modeling methods have received much attention. Constraint-based modeling (CBM) is a knowledge-driven mathematical approach that has been widely used in fermentation analysis and optimization due to its capabilities of predicting the cellular phenotype from genotype through high-throughput means. On the other hand, machine learning (ML) is a data-driven statistical method that identifies the data patterns within sophisticated biological systems and processes, where there is inadequate knowledge to represent underlying mechanisms. Furthermore, ML models are becoming a viable complement to constraint-based models in a reciprocal manner when one is used as a pre-step of another. As a result, more predictable model is produced. This review highlights the applications of CBM and ML independently and the combination of these two approaches for analyzing and optimizing fermentation parameters. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohammad Karim Khaleghi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Iman Shahidi Pour Savizi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, USA.,Department of Pediatrics, University of California, San Diego, USA
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Xu J, Zheng S, Dawood Z, Hill C, Jin W, Xu X, Ding J, Borys MC, Ghose S, Li ZJ, Pendse G. Productivity improvement and charge variant modulation for intensified cell culture processes by adding a carboxypeptidase B (CpB) treatment step. Biotechnol Bioeng 2021; 118:3334-3347. [PMID: 33624836 DOI: 10.1002/bit.27723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
The goal of cell culture process intensification is to improve productivity while maintaining acceptable quality attributes. In this report, four processes, namely a conventional manufacturing Process A, and processes intensified by enriched N-1 seed (Process B), by perfusion N-1 seed (Process C), and by perfusion production (Process D) were developed for the production of a monoclonal antibody. The three intensified processes substantially improved productivity, however, the product either failed to meet the specification for charge variant species (main peak) for Process D or the production process required early harvest to meet the specification for charge variant species, Day 10 or Day 6 for Processes B and C, respectively. The lower main peak for the intensified processes was due to higher basic species resulting from higher C-terminal lysine. To resolve this product quality issue, we developed an enzyme treatment method by introducing carboxypeptidase B (CpB) to clip the C-terminal lysine, leading to significantly increased main peak and an acceptable and more homogenous product quality for all the intensified processes. Additionally, Processes B and C with CpB treatment extended bioreactor durations to Day 14 increasing titer by 38% and 108%, respectively. This simple yet effective enzyme treatment strategy could be applicable to other processes that have similar product quality issues.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Shun Zheng
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zeinab Dawood
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Charles Hill
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Weixin Jin
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Xuankuo Xu
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Julia Ding
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Michael C Borys
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Girish Pendse
- Global Product Development and Supply, Bristol Myers Squibb Company, Summit, New Jersey, USA
| |
Collapse
|
7
|
Yuan JJ, Gao D, Hu F, Shi Y, Wu ZH, Hu CQ, Huang XD, Fang WJ, Zhang HT, Wang HB. Isolation and characterization of charge variants of infliximab biosimilar HS626. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1162:122485. [PMID: 33360415 DOI: 10.1016/j.jchromb.2020.122485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Abstract
Charge variants are the most commonly observed sources of heterogeneity in the routine manufacturing of monoclonal antibodies. To gain further insight into the structural foundation of charge heterogeneity and its influence on biological functions, an infliximab biosimilar HS626 from a biopharmaceutical facility was isolated by semipreparative cation exchange chromatography (CEX) to obtain fractions of acidic and basic charge variants and determine the main species. It was assessed again by CEX to ensure purities. Through a series of structural and physicochemical characterizations, we concluded that the acidic variants were caused by fragments, Met oxidation, Asn deamidation, higher levels of sialylation and galactosylation of N-linked glycans, and less high mannose. The basic variants resulted mainly from aggregates, fragments, and Met oxidation. Through further analysis of antigen binding affinity, cell death inhibitory activity, ADCC, and CDC, as well as FcRn, FcγRIIIa, and C1q affinity, we demonstrated that the charge heterogeneity did not affect biological functions. This research enhances the understanding of charge variants, which are usually effective components that should not be intentionally reduced unless biological functions are affected.
Collapse
Affiliation(s)
- Jun-Jie Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Hisun Bioray Biopharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Dong Gao
- Zhejiang Hisun Bioray Biopharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Feng Hu
- Zhejiang Hisun Bioray Biopharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Yang Shi
- Zhejiang Hisun Bioray Biopharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Zhen-Hua Wu
- Zhejiang Hisun Bioray Biopharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Chuan-Qin Hu
- Zhejiang Hisun Bioray Biopharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Xiao-Dong Huang
- Zhejiang Hisun Bioray Biopharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China
| | - Wei-Jie Fang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hai-Tao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hai-Bin Wang
- Zhejiang Hisun Bioray Biopharmaceutical Co., Ltd., Taizhou, Zhejiang 318000, China.
| |
Collapse
|
8
|
Prade E, Zeck A, Stiefel F, Unsoeld A, Mentrup D, Arango Gutierrez E, Gorr IH. Cysteine in cell culture media induces acidic IgG1 species by disrupting the disulfide bond network. Biotechnol Bioeng 2020; 118:1091-1104. [PMID: 33200817 PMCID: PMC7986432 DOI: 10.1002/bit.27628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 01/16/2023]
Abstract
A high degree of charge heterogeneity is an unfavorable phenomenon commonly observed for therapeutic monoclonal antibodies (mAbs). Removal of these impurities during manufacturing often comes at the cost of impaired step yields. A wide spectrum of posttranslational and chemical modifications is known to modify mAb charge. However, a deeper understanding of underlying mechanisms triggering charged species would be beneficial for the control of mAb charge variants during bioprocessing. In this study, a comprehensive analytical investigation was carried out to define the root causes and mechanisms inducing acidic variants of an immunoglobulin G1‐derived mAb. Characterization of differently charged species by liquid chromatography–mass spectrometry revealed the reduction of disulfide bonds in acidic variants, which is followed by cysteinylation and glutathionylation of cysteines. Importantly, biophysical stability and integrity of the mAb are not affected. By in vitro incubation of the mAb with the reducing agent cysteine, disulfide bond degradation was directly linked to an increase of numerous acidic species. Modifying the concentrations of cysteine during the fermentation of various mAbs illustrated that redox potential is a critical aspect to consider during bioprocess development with respect to charge variant control.
Collapse
Affiliation(s)
- Elke Prade
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Anne Zeck
- Pharma and Biotech, NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Fabian Stiefel
- Late Stage USP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Andreas Unsoeld
- Late Stage USP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Mentrup
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Erik Arango Gutierrez
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ingo H Gorr
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
9
|
Xu P, Xu S, He C, Khetan A. Applications of small molecules in modulating productivity and product quality of recombinant proteins produced using cell cultures. Biotechnol Adv 2020; 43:107577. [PMID: 32540474 DOI: 10.1016/j.biotechadv.2020.107577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Mammalian cell cultures have been used extensively for production of recombinant protein therapeutics such as monoclonal antibodies, fusion proteins and enzymes for decades. Small molecules have been investigated as media supplements to improve process productivity and reduce cost of goods. Those chemicals can lead to significant yield improvement through different mechanisms such as cell cycle modulation, cellular redox regulation, etc. In addition to productivity, small molecules have also been routinely used to regulate post-translational modifications of recombinant proteins. This review summarizes key applications of small molecules in protein productivity improvement and product quality control.
Collapse
Affiliation(s)
- Ping Xu
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb Company, New Brunswick, NJ 08903, United States of America.
| | - Sen Xu
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb Company, New Brunswick, NJ 08903, United States of America
| | - Chunyan He
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb Company, New Brunswick, NJ 08903, United States of America
| | - Anurag Khetan
- Biologics Development, Global Product Development & Supply, Bristol Myers Squibb Company, New Brunswick, NJ 08903, United States of America
| |
Collapse
|
10
|
Weng Z, Jin J, Shao C, Li H. Reduction of charge variants by CHO cell culture process optimization. Cytotechnology 2020; 72:259-269. [PMID: 32236800 DOI: 10.1007/s10616-020-00375-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 11/29/2022] Open
Abstract
Over the past decade, global interest in the development of therapeutic monoclonal antibodies (mAbs) has risen rapidly. As therapeutic agents, antibodies have shown marked efficacy in combatting a range of cancers and immune diseases with high target specificity and low toxicity (Carla Lucia et al. in PLoS ONE 6:e24071, 2011; Donaghy in MAbs 8:659-671, 2016; Nasiri et al. in J Cell Physiol 9:6441-6457, 2018; Teo et al. in Cancer Immunol Immunother 61:2295-2309, 2012). Recent advances in cell culture technology, such as high-throughput clone screening, have facilitated antibody production at concentrations exceeding 10 g/L (Chen et al. in BMC Immunol 19:35, 2018; Huang et al. in Biotechnol Prog 26:1400-1410, 2010; Lu et al. in Biotechnol Bioeng 110:191-205, 2013; Singh et al. in Biotechnol Bioeng 113:698-716, 2016). As titers have improved, the industry has begun to focus on the adjustment of target antibody quality profiles to improve efficacy. Cell lines, culture media, and culture conditions impact protein quality (Van Beers and Bardor in Biotechnol J 7:1473-1484, 2012). Optimization of critical quality attributes (CQAs), such as charge variants, can be achieved through bioprocess development and is the preferred approach as changes to the cell line or growth media used is considered unfavorable by regulatory bodies (Gawlitzek et al. in Biotechnol Bioeng 103:1164-1175, 2009; Jordan et al. in Cytotechnology 65:31-40, 2013; Pan et al. in Cytotechnology 69:39-56, 2016). In this study, the effect of process control and ion supplementation on charge variants of mAbs produced by Chinese hamster ovary (CHO) cells was investigated. Results of this study demonstrated that the concentration of Zn2+, duration of culturing, and temperature affect charge variants of a given mAb. Under the optimum conditions of 3L bioreactors, the most significant was that Zn2 + and temperature shift could further improve the quality of antibody. The main peak increased by 12%, and the acid peak decreased by 16%. At the same time, there was no significant loss of titer. This study provided supporting evidence for methods to improve charge variants arising during mAb production.
Collapse
Affiliation(s)
- Zhibing Weng
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Process Science and Production Department, Sunshine GuoJian Pharmaceutical (Shanghai), Shanghai, China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu, China
| | - ChunHua Shao
- Process Science and Production Department, Sunshine GuoJian Pharmaceutical (Shanghai), Shanghai, China
| | - Huazhong Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
11
|
McHugh KP, Xu J, Aron KL, Borys MC, Li ZJ. Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells. Biotechnol Prog 2020; 36:e2959. [DOI: 10.1002/btpr.2959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Kyle P. McHugh
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Jianlin Xu
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Kathryn L. Aron
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Michael C. Borys
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Zheng Jian Li
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| |
Collapse
|
12
|
Multivariate analysis of metabolic parameters and optimization of antibody production using high cell density hybridoma in hollow fiber bioreactors. Biotechnol Lett 2019; 41:963-977. [PMID: 31325004 DOI: 10.1007/s10529-019-02712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The relationships of manipulation of culture temperature and medium circulation rate on the metabolic parameters were regressed by multiple linear regression analysis in hollow fiber bioreactors (HFB). RESULTS The high circulation rate could significantly enhance the oxygen consumption of the hybridoma cells and the medium's oxidation-reduction potential. A mildly hypothermic condition of 36 °C and a circulation rate of 182.5 mL/min could support the hybridoma had the maximal antibody titer of 60.75 μg/mL for 20 days. When the ammonium ion was 65 ppm or lactate close to 2.6 g/L, the medium was replaced to maintain the stable and healthy cells at the high cell concentration of 3.33 × 108/mL for continuous antibody production. Two serum-free media could be successfully applied to this perfusion system and maintain hybridoma growth and antibody production. CONCLUSION The single-use HFBs could provide the advantages including high cell density, low shear stress, and continuous antibody production.
Collapse
|
13
|
Xu J, Tang P, Yongky A, Drew B, Borys MC, Liu S, Li ZJ. Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling. MAbs 2019; 11:191-204. [PMID: 30230966 PMCID: PMC6343780 DOI: 10.1080/19420862.2018.1525262] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022] Open
Abstract
Temperature shift (TS) to a hypothermic condition has been widely used during protein production processes that use Chinese hamster ovary (CHO) cells. The effect of temperature on cell growth, metabolites, protein titer and quality depends on cell line, product, and other bioreactor conditions. Due to the large numbers of experiments, which typically last 2-3 weeks each, limited systematic TS studies have been reported with multiple shift temperatures and steps at different times. Here, we systematically studied the effect of temperature on cell culture performance for the production of two monoclonal antibodies by industrial GS and DG44 CHO cell lines. Three 2-8 day short-duration methods were developed and validated for researching the effect of many different temperatures on CHO cell culture and quality attributes. We found that minor temperature differences (1-1.5 °C) affected cell culture performance. The kinetic parameters extracted from the short duration data were subsequently used to compute and predict cell culture performance in extended duration of 10-14 days with multiple TS conditions for both CHO cell lines. These short-duration culture methods with kinetic modeling tools may be used for effective TS optimization to achieve the best profiles for cell growth, metabolites, titer and quality attributes. Although only three short-duration methods were developed with two CHO cell lines, similar short-duration methods with kinetic modeling may be applied for different hosts, including both microbial and other mammalian cells.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Peifeng Tang
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| | - Andrew Yongky
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Barry Drew
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Michael C. Borys
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| |
Collapse
|
14
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
15
|
Xu J, Rehmann MS, Xu X, Huang C, Tian J, Qian NX, Li ZJ. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media. MAbs 2018; 10:488-499. [PMID: 29388872 DOI: 10.1080/19420862.2018.1433978] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.
Collapse
Affiliation(s)
- Jianlin Xu
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Matthew S Rehmann
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Xuankuo Xu
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Chao Huang
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Jun Tian
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Nan-Xin Qian
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| | - Zheng Jian Li
- a Global Product Development and Supply, Bristol-Myers Squibb Company , Devens , MA , United States
| |
Collapse
|
16
|
Tang H, Miao S, Zhang X, Fan L, Liu X, Tan WS, Zhao L. Insights into the generation of monoclonal antibody acidic charge variants during Chinese hamster ovary cell cultures. Appl Microbiol Biotechnol 2017; 102:1203-1214. [DOI: 10.1007/s00253-017-8650-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
17
|
Torkashvand F, Vaziri B. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components. IRANIAN BIOMEDICAL JOURNAL 2017; 21:131-41. [PMID: 28176518 PMCID: PMC5392216 DOI: 10.18869/acadpub.ibj.21.3.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 11/09/2022]
Abstract
The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.
Collapse
Affiliation(s)
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Identification of multiple sources of the acidic charge variants in an IgG1 monoclonal antibody. Appl Microbiol Biotechnol 2017; 101:5627-5638. [DOI: 10.1007/s00253-017-8301-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/28/2022]
|
19
|
Brühlmann D, Sokolov M, Butté A, Sauer M, Hemberger J, Souquet J, Broly H, Jordan M. Parallel experimental design and multivariate analysis provides efficient screening of cell culture media supplements to improve biosimilar product quality. Biotechnol Bioeng 2017; 114:1448-1458. [DOI: 10.1002/bit.26269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 01/15/2023]
Affiliation(s)
- David Brühlmann
- Merck Biopharma; Biotech Process Sciences; Merck Biopharma; Route de Fenil 25; 1804; Corsier-sur-Vevey Switzerland
- Department of Biotechnology and Biophysics; Biozentrum; Julius-Maximilians-Universität Würzburg; Germany
| | - Michael Sokolov
- Department of Chemistry and Applied Biosciences; Institute of Chemical and Bioengineering; ETH Zürich Switzerland
| | - Alessandro Butté
- Department of Chemistry and Applied Biosciences; Institute of Chemical and Bioengineering; ETH Zürich Switzerland
| | - Markus Sauer
- Department of Biotechnology and Biophysics; Biozentrum; Julius-Maximilians-Universität Würzburg; Germany
| | - Jürgen Hemberger
- Institute for Biochemical Engineering and Analytics; University of Applied Sciences Giessen; Germany
| | - Jonathan Souquet
- Merck Biopharma; Biotech Process Sciences; Merck Biopharma; Route de Fenil 25; 1804; Corsier-sur-Vevey Switzerland
| | - Hervé Broly
- Merck Biopharma; Biotech Process Sciences; Merck Biopharma; Route de Fenil 25; 1804; Corsier-sur-Vevey Switzerland
| | - Martin Jordan
- Merck Biopharma; Biotech Process Sciences; Merck Biopharma; Route de Fenil 25; 1804; Corsier-sur-Vevey Switzerland
| |
Collapse
|
20
|
Charge variant analysis of proposed biosimilar to Trastuzumab. Biologicals 2017; 46:46-56. [DOI: 10.1016/j.biologicals.2016.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/04/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
|
21
|
Investigation of the interactions of critical scale-up parameters (pH, pO 2 and pCO 2) on CHO batch performance and critical quality attributes. Bioprocess Biosyst Eng 2016; 40:251-263. [PMID: 27752770 PMCID: PMC5274649 DOI: 10.1007/s00449-016-1693-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022]
Abstract
Understanding process parameter interactions and their effects on mammalian cell cultivations is an essential requirement for robust process scale-up. Furthermore, knowledge of the relationship between the process parameters and the product critical quality attributes (CQAs) is necessary to satisfy quality by design guidelines. So far, mainly the effect of single parameters on CQAs was investigated. Here, we present a comprehensive study to investigate the interactions of scale-up relevant parameters as pH, pO2 and pCO2 on CHO cell physiology, process performance and CQAs, which was based on design of experiments and extended product quality analytics. The study used a novel control strategy in which process parameters were decoupled from each other, and thus allowed their individual control at defined set points. Besides having identified the impact of single parameters on process performance and product quality, further significant interaction effects of process parameters on specific cell growth, specific productivity and amino acid metabolism could be derived using this method. Concerning single parameter effects, several monoclonal antibody (mAb) charge variants were affected by process pCO2 and pH. N-glycosylation analysis showed positive correlations between mAb sialylation and high pH values as well as a relationship between high mannose variants and process pH. This study additionally revealed several interaction effects as process pH and pCO2 interactions on mAb charge variants and N-glycosylation pattern. Hence, through our process control strategy and multivariate investigation, novel significant process parameter interactions and single effects were identified which have to be taken into account especially for process scale-up.
Collapse
|
22
|
Kim DG, Kim HJ, Kim HJ. Effects of carboxypeptidase B treatment and elevated temperature on recombinant monoclonal antibody charge variants in cation-exchange chromatography analysis. Arch Pharm Res 2016; 39:1472-1481. [DOI: 10.1007/s12272-016-0818-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
|
23
|
Singh SK, Narula G, Rathore AS. Should charge variants of monoclonal antibody therapeutics be considered critical quality attributes? Electrophoresis 2016; 37:2338-46. [DOI: 10.1002/elps.201600078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/01/2016] [Accepted: 06/18/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Sumit Kumar Singh
- Department of Chemical Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi India
| | - Gunjan Narula
- Department of Chemical Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi India
| | - Anurag S. Rathore
- Department of Chemical Engineering; Indian Institute of Technology Delhi; Hauz Khas New Delhi India
| |
Collapse
|
24
|
Xie P, Niu H, Chen X, Zhang X, Miao S, Deng X, Liu X, Tan WS, Zhou Y, Fan L. Elucidating the effects of pH shift on IgG1 monoclonal antibody acidic charge variant levels in Chinese hamster ovary cell cultures. Appl Microbiol Biotechnol 2016; 100:10343-10353. [DOI: 10.1007/s00253-016-7749-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 01/04/2023]
|
25
|
Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations. Bioprocess Biosyst Eng 2016; 39:1689-702. [DOI: 10.1007/s00449-016-1644-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022]
|
26
|
Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol 2016; 100:3451-61. [PMID: 26936774 PMCID: PMC4803805 DOI: 10.1007/s00253-016-7388-9] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 01/16/2023]
Abstract
Since the first use of Chinese hamster ovary (CHO) cells for recombinant protein expression, production processes have steadily improved through numerous advances. In this review, we have highlighted several key milestones that have contributed to the success of CHO cells from the beginning of their use for monoclonal antibody (mAb) expression until today. The main factors influencing the yield of a production process are the time to accumulate a desired amount of biomass, the process duration, and the specific productivity. By comparing maximum cell densities and specific growth rates of various expression systems, we have emphasized the limiting parameters of different cellular systems and comprehensively described scientific approaches and techniques to improve host cell lines. Besides the quantitative evaluation of current systems, the quality-determining properties of a host cell line, namely post-translational modifications, were analyzed and compared to naturally occurring polyclonal immunoglobulin fractions from human plasma. In summary, numerous different expression systems for mAbs are available and also under scientific investigation. However, CHO cells are the most frequently investigated cell lines and remain the workhorse for mAb production until today.
Collapse
Affiliation(s)
- Renate Kunert
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria.
| | - David Reinhart
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
27
|
Hazeltine LB, Knueven KM, Zhang Y, Lian Z, Olson DJ, Ouyang A. Chemically defined media modifications to lower tryptophan oxidation of biopharmaceuticals. Biotechnol Prog 2015; 32:178-88. [PMID: 26560440 DOI: 10.1002/btpr.2195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/16/2015] [Indexed: 12/16/2022]
Abstract
Oxidation of biopharmaceuticals is a major product quality issue with potential impacts on activity and immunogenicity. At Eli Lilly and Company, high tryptophan oxidation was observed for two biopharmaceuticals in development produced in Chinese hamster ovary cells. A switch from historical hydrolysate-containing media to chemically defined media with a reformulated basal powder was thought to be responsible, so mitigation efforts focused on media modification. Shake flask studies identified that increasing tryptophan, copper, and manganese and decreasing cysteine concentrations were individual approaches to lower tryptophan oxidation. When amino acid and metal changes were combined, the modified formulation had a synergistic impact that led to substantially less tryptophan oxidation for both biopharmaceuticals. Similar results were achieved in shake flasks and benchtop bioreactors, demonstrating the potential to implement these modifications at manufacturing scale. The modified formulation did not negatively impact cell growth and viability, product titer, purity, charge variants, or glycan profile. A potential mechanism of action is presented for each amino acid or metal factor based on its role in oxidation chemistry. This work served not only to mitigate the tryptophan oxidation issue in two Lilly biopharmaceuticals in development, but also to increase our knowledge and appreciation for the impact of media components on product quality.
Collapse
Affiliation(s)
- Laurie B Hazeltine
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Kristine M Knueven
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Yan Zhang
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Zhirui Lian
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Donald J Olson
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| | - Anli Ouyang
- Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285
| |
Collapse
|