1
|
Raj M K, Priyadarshani J, Karan P, Bandyopadhyay S, Bhattacharya S, Chakraborty S. Bio-inspired microfluidics: A review. BIOMICROFLUIDICS 2023; 17:051503. [PMID: 37781135 PMCID: PMC10539033 DOI: 10.1063/5.0161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.
Collapse
Affiliation(s)
- Kiran Raj M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jyotsana Priyadarshani
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium
| | - Pratyaksh Karan
- Géosciences Rennes Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya Bhattacharya
- Achira Labs Private Limited, 66b, 13th Cross Rd., Dollar Layout, 3–Phase, JP Nagar, Bangalore, Karnataka 560078, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Sateesh J, Guha K, Dutta A, Sengupta P, Yalamanchili D, Donepudi NS, Surya Manoj M, Sohail SS. A comprehensive review on advancements in tissue engineering and microfluidics toward kidney-on-chip. BIOMICROFLUIDICS 2022; 16:041501. [PMID: 35992641 PMCID: PMC9385224 DOI: 10.1063/5.0087852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This review provides a detailed literature survey on microfluidics and its road map toward kidney-on-chip technology. The whole review has been tailored with a clear description of crucial milestones in regenerative medicine, such as bioengineering, tissue engineering, microfluidics, microfluidic applications in biomedical engineering, capabilities of microfluidics in biomimetics, organ-on-chip, kidney-on-chip for disease modeling, drug toxicity, and implantable devices. This paper also presents future scope for research in the bio-microfluidics domain and biomimetics domain.
Collapse
Affiliation(s)
| | - Koushik Guha
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Arindam Dutta
- Urologist, RG Stone Urology and Laparoscopic Hospital, Kolkata, West Bengal, India
| | | | | | - Nanda Sai Donepudi
- Medical Interns, Government Siddhartha Medical College, Vijayawada, India
| | - M. Surya Manoj
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| | - Sk. Shahrukh Sohail
- Department of Electronics and Communication Engineering, National MEMS Design Centre, National Institute of Technology Silchar, Assam 788010, India
| |
Collapse
|
3
|
Yong KW, Janmaleki M, Pachenari M, Mitha AP, Sanati-Nezhad A, Sen A. Engineering a 3D human intracranial aneurysm model using liquid-assisted injection molding and tuned hydrogels. Acta Biomater 2021; 136:266-278. [PMID: 34547516 DOI: 10.1016/j.actbio.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/30/2022]
Abstract
Physiologically relevant intracranial aneurysm (IA) models are crucially required to facilitate testing treatment options for IA. Herein, we report the development of a new in vitro tissue-engineered platform, which recapitulates the microenvironment, structure, and cellular complexity of native human IA. A new modified liquid-assisted injection molding technique was developed to fabricate a three-dimensional hollow IA model with clinically relevant IA dimensions within a mechanically tuned Gelatin Methacryloyl (GelMA) hydrogel. An endothelium lining was created inside the IA model by culturing human umbilical vein endothelial cells over pre-cultured human brain vascular smooth muscle cells. These cellularized IA models were subjected to medium perfusion at flow rates between 6.3 and 15.75 mL/min for inducing biomimetic vessel wall shear stress (10-25 dyn/cm2) to the cells for ten days. Both cell types maintained their secretome profiles and showed more than 96% viability, demonstrating the biocompatibility of the hydrogel during perfusion cell culture at such flow rates. Based on the characterized viscoelastic properties of the GelMA hydrogel and with the aid of a fluid-structure interaction model, the capability of the IA model in predicting the response of the IA to different fluid flow profiles was mathematically shown. With physiologically relevant behavior, our developed in vitro human IA model could allow researchers to better understand the pathophysiology and treatment of IA. STATEMENT OF SIGNIFICANCE: A three-dimensional intracranial aneurysm (IA) tissue model recapitulating the microenvironment, structure, and cellular complexity of native human IA was developed. • An endothelium lining was created inside the IA model over pre-cultured human brain vascular smooth muscle cells over at least 10-day successful culture. • The cells maintained their secretome profiles, demonstrating the biocompatibility of hydrogel during a long-term perfusion cell culture. • The IA model showed its capability in predicting the response of IA to different fluid flow profiles. • The cells in the vessel region behaved differently from cells in the aneurysm region due to alteration in hemodynamic shear stress. • The IA model could allow researchers to better understand the pathophysiology and treatment options of IA.
Collapse
|
4
|
Tang F, Manz XD, Bongers A, Odell RA, Joukhdar H, Whitelock JM, Lord MS, Rnjak-Kovacina J. Microchannels Are an Architectural Cue That Promotes Integration and Vascularization of Silk Biomaterials in Vivo. ACS Biomater Sci Eng 2020; 6:1476-1486. [DOI: 10.1021/acsbiomaterials.9b01624] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fengying Tang
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xue D. Manz
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Pulmonary Medicine, Amsterdam UMC, VU University Medical Center, Amsterdam Cardiovascular Sciences (ACS), Amsterdam 1081 HV, The Netherlands
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ross A. Odell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Habib Joukhdar
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Micropatterning Method for Porous Materials Using the Difference of the Glass Transition Temperature between Exposed and Unexposed Areas of a Thick-Photoresist. MICROMACHINES 2019; 11:mi11010054. [PMID: 31906208 PMCID: PMC7019882 DOI: 10.3390/mi11010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023]
Abstract
A cell culture on a scaffold has the advantages of functionality and easy handling, because the geometry of the cellular tissue is controlled by designing the scaffold. To create complex cellular tissue, scaffolds should be complex two-dimensional (2D) and three-dimensional (3D) structures. However, it is difficult to fabricate a scaffold with a 2D and 3D structure because the shape, size, and fabrication processes of a 2D structure in creating a cell layer, and a 3D structure containing cells, are different. In this research, we propose a micropatterning method for porous materials using the difference of the glass transition temperature between exposed and unexposed areas of a thick-photoresist. Since the proposed method does not require a vacuum, high temperature, or high voltage, it can be used for fabricating various structures with a wide range of scales, regardless of the materials used. Additionally, the patterning area can be fabricated accurately by photolithography. To evaluate the proposed method, a membrane integrated scaffold (MIS) with a 2D porous membrane and 3D porous material was fabricated. The MIS had a porous membrane with a pore size of 4 μm or less, which was impermeable to cells, and a porous material which was capable of containing cells. By seeding HUVECs and HeLa cells on each side of the MIS, the cellular tissue was formed with the designed geometry.
Collapse
|
6
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
7
|
Hou K, Hu Z, Mugaanire IT, Li C, Chen G, Zhu M. Fiber forming mechanism and reaction kinetics of novel dynamic-crosslinking-spinning for Poly(ethylene glycol) diacrylate fiber fabrication. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Lim KS, Baptista M, Moon S, Woodfield TB, Rnjak-Kovacina J. Microchannels in Development, Survival, and Vascularisation of Tissue Analogues for Regenerative Medicine. Trends Biotechnol 2019; 37:1189-1201. [DOI: 10.1016/j.tibtech.2019.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
|
9
|
Liu Y, Yang Y, Shen Y. Tubular Microcapsules with Polysaccharide Membranes Based on a Co-axial Microfluidic Chip. ACS Biomater Sci Eng 2019; 5:6281-6289. [DOI: 10.1021/acsbiomaterials.9b01077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yanting Liu
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yuanyuan Yang
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518055, China
| |
Collapse
|
10
|
Li S, Wang K, Hu Q, Zhang C, Wang B. Direct-write and sacrifice-based techniques for vasculatures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109936. [PMID: 31500055 DOI: 10.1016/j.msec.2019.109936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/22/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
Fabricating biomimetic vasculatures is considered one of the greatest challenges in tissue regeneration due to their complex structures across various length scales. Many strategies have been investigated on how to fabricate tissue-engineering vasculatures (TEVs), including vascular-like and vascularized structures that can replace their native counterparts. The advancement of additive manufacturing (AM) technologies has enabled a wide range of fabrication techniques that can directly-write TEVs with complex and delicate structures. Meanwhile, sacrifice-based techniques, which rely on the removal of encapsulated sacrificial templates to form desired cavity-like structures, have also been widely studied. This review will specifically focus on the two most promising methods in these recently developed technologies, which are the direct-write method and the sacrifice-based method. The performance, advantages, and shortcomings of each technique are analyzed and compared. In the discussion, we list current challenges in this field and present our vision of next-generation TEVs technologies. Perspectives on future research in this field are given at the end.
Collapse
Affiliation(s)
- Shuai Li
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China.
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Coculture Method to Obtain Endothelial Networks Within Human Tissue-Engineered Skeletal Muscle. Methods Mol Biol 2019; 1889:169-183. [PMID: 30367414 DOI: 10.1007/978-1-4939-8897-6_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skeletal muscle tissue engineering aims at creating functional skeletal muscle in vitro. Human muscle organoids can be used for potential applications in regenerative medicine, but also as an in vitro model for myogenesis or myopathology. However, the thickness of constructs is limited due to passive diffusion of nutrients and oxygen. Introduction of a vascular network in vitro may solve this limitation. Here, we describe tissue engineering of in vitro skeletal muscle consisting of human aligned myofibers with interspersed endothelial networks. To create bio-artificial muscle (BAM), human muscle progenitor cells are cocultured with human umbilical vein endothelial cells (HUVECs) in a fibrin hydrogel. The cell-gel mix is cast into silicone molds with end attachment sites and cultured in endothelial growth medium (EGM-2) for 1 week. The passive forces generated in the contracted hydrogel align the myogenic cells parallel to the long axis of the contracted gel such that they fuse into aligned multinucleated myofibers. This results in the formation of a 2 cm long and ~1.5 mm tick human BAM construct with endothelial networks.
Collapse
|
12
|
Abstract
Vascularization is essential for tissue regeneration. Despite extensive efforts in the past decades, sufficient and rapid vascularization remains a major challenge in tissue engineering. Many studies have shown that the addition of channels in a porous scaffold can provide the ability to promote cell growth and rapid vascularization, thus leading to better outcomes in new tissue formation. Large size scaffolds lack perfusable channel networks and negatively impair the survival of transplanted cells and tissue function development, leading to necrotic core formation and the failure of functional tissue formation. Presently, there are many methods to produce channels in porous scaffolds for vascularization. Here, we review the function of channels in porous scaffolds and the approaches to produce those channels.
Collapse
Affiliation(s)
- Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.,Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Jia Chang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
Xu F, Dodd M, Sheardown H, Hoare T. Single-Step Reactive Electrospinning of Cell-Loaded Nanofibrous Scaffolds as Ready-to-Use Tissue Patches. Biomacromolecules 2018; 19:4182-4192. [PMID: 30222928 DOI: 10.1021/acs.biomac.8b00770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Megan Dodd
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
14
|
Yajima Y, Lee CN, Yamada M, Utoh R, Seki M. Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. J Biosci Bioeng 2018; 126:111-118. [PMID: 29502942 DOI: 10.1016/j.jbiosc.2018.01.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/10/2018] [Accepted: 01/31/2018] [Indexed: 01/20/2023]
Abstract
Although the reconstruction of functional 3D liver tissue models in vitro presents numerous challenges, it is in great demand for drug development, regenerative medicine, and physiological studies. Here we propose a new approach to perform perfusion cultivation of liver cells by assembling cell-laden hydrogel microfibers. HepG2 cells were densely packed into the core of sandwich-type anisotropic microfibers, which were produced using microfluidic devices. The obtained microfibers were bundled up and packed into a perfusion chamber, and perfusion cultivation was performed. We evaluated cell viability and functions, and also monitored the oxygen consumption. Furthermore, fibers covered with vascular endothelial cells were united during the perfusion culture, to form vascular network-like conduits between fibers. The presented technique can structurally mimic the hepatic lobule in vivo and could prove to be a useful model for various biomedical research applications.
Collapse
Affiliation(s)
- Yuya Yajima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Chu Ning Lee
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
15
|
Fabrication of single and bundled filament-like tissues using biodegradable hyaluronic acid-based hollow hydrogel fibers. Int J Biol Macromol 2017; 104:204-212. [PMID: 28596006 DOI: 10.1016/j.ijbiomac.2017.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/22/2017] [Accepted: 06/03/2017] [Indexed: 01/01/2023]
Abstract
Hydrogel fibers with biodegradable and biocompatible features are useful for the fabrication of filament-like tissues. We developed cell-laden hyaluronic acid (HA)-based hollow hydrogel fibers to create single and bundled filament-like tissues. The cell-laden fibers were fabricated by crosslinking phenolic-substituted hyaluronic acid (HA-Ph) in an aqueous solution containing cells through a horseradish peroxidase (HRP)-catalyzed reaction in the presence of catalase by extruding the solution in ambient flow of an aqueous solution containing H2O2. The encapsulated cells proliferated and grew within the hollow core, and the cells formed filament-like constructs in both single and bundled fibers, which were obtained by collection on a rotating cylindrical tube. Single and bundled filament-like tissues covered with an additional heterogeneous cell layer were obtained by degrading the fiber membrane using hyaluronidase after covering the fiber surface with heterogeneous cells. Cellular viability was preserved during HA-Ph hydrogel fiber fabrication and filament-like tissue formation. These results demonstrate the feasibility of HA-based hollow hydrogel fibers obtained through HRP- and catalase-mediated reactions to engineer filament-like tissues.
Collapse
|
16
|
Takei T, Sakai S, Yoshida M. In vitro formation of vascular-like networks using hydrogels. J Biosci Bioeng 2016; 122:519-527. [DOI: 10.1016/j.jbiosc.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 01/19/2023]
|