1
|
Han H, Li H, Wang L, Zhu Y, Guan H, Yao J, Xiao W, Li B, Liao X. Preparation of Autoclavable and Injectable Silk Fibroin Cryogels for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400038. [PMID: 38843388 DOI: 10.1002/mabi.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/19/2024] [Indexed: 06/19/2024]
Abstract
A cryogel is a supermacroporous gel network that is generated at subzero temperatures by polymerizing monomers or gelating polymeric precursors. Since cryogels possess inherent characteristics such as interconnected macroporous structures, excellent mechanical properties, and high resistance to autoclave sterilization, they are highly desirable for tissue engineering and regenerative medicine. Silk fibroin, a natural protein obtained from Bombyx mori silkworms, is an excellent raw material for cryogel preparation. The aim of this study is to establish a controlled method for preparing silk fibroin cryogels with suitable properties for application as tissue engineering scaffolds. Using a dual crosslinking strategy consisting of low-temperature radical polymerization coupled with methanol-induced conformational transformation, porous cryogels are prepared. The cryogels display many unique characteristics, such as an interconnected macroporous structure, a high water absorption capacity, water-triggered shape memory, syringe injectability, and strong resilience to autoclave sterilization. Furthermore, the cryogels demonstrate excellent biocompatibility and cell affinity, facilitating cell adhesion, migration, and proliferation. The interconnected supermacroporous architecture resembling the native extracellular matrix, together with their unique physical properties and autoclaving stability, suggests that cryogels are promising candidate scaffolds for tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Hongjuan Han
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Haiyan Li
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Lu Wang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Yong Zhu
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Haoqing Guan
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Jingzhi Yao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, P. R. China
| |
Collapse
|
2
|
Platon IV, Ghiorghita CA, Lazar MM, Aprotosoaie AC, Gradinaru AC, Nacu I, Verestiuc L, Nicolescu A, Ciocarlan N, Dinu MV. Highly Compressible, Superabsorbent, and Biocompatible Hybrid Cryogel Constructs Comprising Functionalized Chitosan and St. John's Wort Extract. Biomacromolecules 2024; 25:5081-5097. [PMID: 38990059 DOI: 10.1021/acs.biomac.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Biobased porous hydrogels enriched with phytocompounds-rich herbal extracts have aroused great interest in recent years, especially in healthcare. In this study, new macroporous hybrid cryogel constructs comprising thiourea-containing chitosan (CSTU) derivative and a Hypericum perforatum L. extract (HYPE), commonly known as St John's wort, were prepared by a facile one-pot ice-templating strategy. Benefiting from the strong interactions between the functional groups of the CSTU matrix and those of polyphenols in HYPE, the hybrid cryogels possess excellent liquid absorption capacity, mechanical resilience, antioxidant performance, and a broad spectrum of antibacterial activity simultaneously. Thus, owing to their design, the hybrid constructs exhibit an interconnected porous architecture with the ability to absorb over 33 and 136 times their dry weight, respectively, when contacted with a phosphate buffer solution (pH 7.4) and an acidic aqueous solution (pH 2). These cryogel constructs have extremely high compressive strengths ranging from 839 to 1045 kPa and withstand elevated strains of over 70% without developing fractures. Moreover, the water-swollen hybrid cryogels with the highest HYPE content revealed a complete and instant shape recovery after uniaxial compression. The incorporation of HYPE into CSTU cryogels enabled substantial improvement in scavenging reactive oxygen species and an expanded antibacterial spectrum toward multiple pathogens, including Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and fungi (Candida albicans). Cell viability experiments demonstrated the cytocompatibility of the 3D cryogel constructs, which did not induce changes in the fibroblast morphology. This work showcases a simple and effective strategy to immobilize HYPE extracts on CSTU 3D networks, allowing the development of novel multifunctional platforms with promising potential in hemostasis, wound dressing, and dermal regeneration scaffolds.
Collapse
Affiliation(s)
- Ioana-Victoria Platon
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | | | - Maria Marinela Lazar
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Ana Clara Aprotosoaie
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| | - Adina Catinca Gradinaru
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| | - Isabella Nacu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Liliana Verestiuc
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Alina Nicolescu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| | - Nina Ciocarlan
- Botanical Garden, Academy of Sciences of Moldova, Padurii Street 18, Chisinau 2002, Republic of Moldova
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, Iasi 700487, Romania
| |
Collapse
|
3
|
Ciptawati E, Takase H, Watanabe NM, Okamoto Y, Nur H, Umakoshi H. Preparation and Characterization of Biodegradable Sponge-like Cryogel Particles of Chitosan via the Inverse Leidenfrost (iLF) Effect. ACS OMEGA 2024; 9:2383-2390. [PMID: 38250365 PMCID: PMC10795030 DOI: 10.1021/acsomega.3c06639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Chitosan-based cryogel particles were synthesized using the inverse Leidenfrost (iLF) effect, with glutaraldehyde employed as the cross-linker. The resulting cryogels exhibited a sponge-like morphology with micrometer-sized interconnected pores and demonstrated resilience, withstanding up to three compression-release cycles. These characteristics highlight the potential of chitosan cryogels for diverse applications, including adsorption and biomedical uses. We further investigated the influence of varying acetic acid concentrations on the properties of the chitosan cryogels. Our findings revealed that the particle size distribution of the cryogels ranged from 1300 to 2900 μm. As the concentration of acetic acid increased, the swelling degree of the chitosan cryogels decreased, stabilizing at an approximate value of around 6 at 0.03 mol of acetic acid. Additionally, the shift in the absorption peak of the OH and free amino groups from 3261 to 3404 cm-1 confirmed the cross-linking reaction between chitosan and glutaraldehyde.
Collapse
Affiliation(s)
- Endang Ciptawati
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
- Department
of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, Indonesia
| | - Hayato Takase
- Department
of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Nozomi Morishita Watanabe
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Yukihiro Okamoto
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Hadi Nur
- Department
of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, Indonesia
| | - Hiroshi Umakoshi
- Division
of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
4
|
Dong Y, Wang Z, Wang J, Sun X, Yang X, Liu G. Mussel-inspired electroactive, antibacterial and antioxidative composite membranes with incorporation of gold nanoparticles and antibacterial peptides for enhancing skin wound healing. J Biol Eng 2024; 18:3. [PMID: 38212854 PMCID: PMC10785445 DOI: 10.1186/s13036-023-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Large skin wounds are one of the most important health problems in the world. Skin wound repair and tissue regeneration are complex processes involving many physiological signals, and effective wound healing remains an enormous clinical challenge. Therefore, there is an urgent need for a strategy to rapidly kill bacteria, promote cell proliferation and accelerate wound healing. At present, electrical stimulation (ES) is often used in the clinical treatment of skin wounds and can simulate the endogenous biological current of the body and accelerate the repair process of skin wounds. However, a single ES strategy has difficulty covering the entire wound area, which may lead to unsatisfactory therapeutic effects. To overcome this deficiency, it is essential to develop a collaborative treatment strategy that combines ES with other treatments. In this study, gold nanoparticles and antibacterial peptides (Os) were loaded on the surface of poly(lactic-co-glycolic acid) (PLGA) material through the reducibility and adhesion of polydopamine (PDA) and improved the electrical activity, anti-inflammatory, antibacterial and biocompatibility properties of the polymer material. At the same time, this composite membrane material (Os/Au-PDA@PLGA) combined with ES was used in wound therapy to improve the wound healing rate. The results show that the new wound repair material has good biocompatibility and can effectively promote cell proliferation and migration. Through the combined application of gold nanoparticles and antibacterial peptides Os, the polymer materials have more efficient bactericidal and antioxidant effects. The antibacterial experiment results showed that gold nanoparticles could further enhance the antibacterial activity of antibacterial peptides. Furthermore, the Os/Au-PDA@PLGA composite membrane has good hydrophilicity and electrical activity, which can provide a more favorable cell microenvironment for wound healing. In vivo studies using a full-thickness skin defect model in rats showed that the Os/Au-PDA@PLGA composite membrane had a better therapeutic effect than the pure PLGA material. More importantly, the combination of the Os/Au-PDA@PLGA composite with ES significantly accelerated the rate of vascularization and collagen deposition and promoted wound healing compared with non-ES controls. Therefore, the combination of the Au/Os-PDA@PLGA composite membrane with ES may provide a new strategy for the effective treatment of skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jiapeng Wang
- Department of Orthopaedic Surgery, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Xuedi Sun
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xiaoyu Yang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Guomin Liu
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
5
|
Liu Z, Lv Y, Zheng G, Wu W, Che X. Chitosan/Polylactic Acid Nanofibers Containing Astragaloside IV as a New Biodegradable Wound Dressing for Wound Healing. AAPS PharmSciTech 2023; 24:202. [PMID: 37783916 DOI: 10.1208/s12249-023-02650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
The ideal wound dressing should adequately protect the wound from bacterial infection and provide a suitable healing environment for the wound. Thus, we prepared a biodegradable functional nanofiber dressing with good antibacterial and biocompatibility by electrospinning technology. The average diameter of the dressing was 354 ± 185 nm, and the porosity was 93.27%. Scanning electron microscopy (SEM) showed that the dressing was smooth without beading. It was also characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The wettability and water vapor permeability of the dressing were tested; the results showed that the dressing had good wettability and permeability. The ability of drug release indicates that continuous release over a period of time is beneficial to wound healing. Finally, the antibacterial effect and in vivo pharmacodynamic evaluation of AS/CS/PLA nanofiber dressing were studied; the result showed that it had significant antibacterial activity and the ability to promote wound healing.
Collapse
Affiliation(s)
- Zemei Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Yuanju Lv
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Guangyan Zheng
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Wenli Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China
| | - Xin Che
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, Guizhou, China.
| |
Collapse
|
6
|
Duan K, Mehwish N, Xu M, Zhu H, Hu J, Lin M, Yu L, Lee BH. Autoclavable Albumin-Based Cryogels with Uncompromising Properties. Gels 2023; 9:712. [PMID: 37754393 PMCID: PMC10530076 DOI: 10.3390/gels9090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
The development of autoclavable hydrogels has been driven by the need for materials that can withstand the rigors of sterilization without compromising their properties or functionality. Many conventional hydrogels cannot withstand autoclave treatment owing to the breakdown of their composition or structure under the high-temperature and high-pressure environment of autoclaving. Here, the effect of autoclaving on the physical, mechanical, and biological properties of bovine serum albumin methacryloyl (BSAMA) cryogels at three protein concentrations (3, 5, and 10%) was extensively studied. We found that BSAMA cryogels at three concentrations remained little changed after autoclaving in terms of gross shape, pore structure, and protein secondary structure. Young's modulus of autoclaved BSAMA cryogels (BSAMAA) at low concentrations (3 and 5%) was similar to that of BSAMA cryogels, whereas 10% BSAMAA exhibited a higher Young's modulus value, compared with 10% BSAMA. Interestingly, BSAMAA cryogels prolonged degradation. Importantly, cell viability, drug release, and hemolytic behaviors were found to be similar among the pre- and post-autoclaved cryogels. Above all, autoclaving proved to be more effective in sterilizing BSAMA cryogels from bacteria contamination than UV and ethanol treatments. Thus, autoclavable BSAMA cryogels with uncompromising properties would be useful for biomedical applications.
Collapse
Affiliation(s)
- Kairui Duan
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325011, China;
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Nabila Mehwish
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Mengdie Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Hu Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Jiajun Hu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Mian Lin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
| | - Lu Yu
- Department of Optometry, Wenzhou Medical University, Wenzhou 325035, China;
| | - Bae Hoon Lee
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou 325011, China;
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China; (M.X.); (H.Z.); (J.H.); (M.L.)
- Department of Optometry, Wenzhou Medical University, Wenzhou 325035, China;
| |
Collapse
|
7
|
Omidian H, Dey Chowdhury S, Babanejad N. Cryogels: Advancing Biomaterials for Transformative Biomedical Applications. Pharmaceutics 2023; 15:1836. [PMID: 37514023 PMCID: PMC10384998 DOI: 10.3390/pharmaceutics15071836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cryogels, composed of synthetic and natural materials, have emerged as versatile biomaterials with applications in tissue engineering, controlled drug delivery, regenerative medicine, and therapeutics. However, optimizing cryogel properties, such as mechanical strength and release profiles, remains challenging. To advance the field, researchers are exploring advanced manufacturing techniques, biomimetic design, and addressing long-term stability. Combination therapies and drug delivery systems using cryogels show promise. In vivo evaluation and clinical trials are crucial for safety and efficacy. Overcoming practical challenges, including scalability, structural integrity, mass transfer constraints, biocompatibility, seamless integration, and cost-effectiveness, is essential. By addressing these challenges, cryogels can transform biomedical applications with innovative biomaterials.
Collapse
Affiliation(s)
- Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
8
|
Yamashita Y, Ohzuno Y, Saito Y, Fujiwara Y, Yoshida M, Takei T. Autoclaving-Triggered Hydrogelation of Chitosan-Gluconic acid Conjugate Aqueous Solution for Wound Healing. Gels 2023; 9:gels9040280. [PMID: 37102892 PMCID: PMC10137746 DOI: 10.3390/gels9040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Moist wound healing is known to heal wounds faster than dry wound healing. Hydrogel wound dressings are suitable for moist wound healing because of their hyperhydrous structure. Chitosan, a natural polymer, promotes wound healing by stimulating inflammatory cells and releasing bioactive compounds. Therefore, chitosan hydrogel has great potential as a wound dressing. In our previous study, physically crosslinked chitosan hydrogels were successfully prepared solely by freeze-thawing of chitosan-gluconic acid conjugate (CG) aqueous solution without using any toxic additives. Furthermore, the CG hydrogels could be sterilized by autoclaving (steam sterilization). In this study, we showed that autoclaving (121 °C, 20 min) of a CG aqueous solution simultaneously achieved gelation of the solution and sterilization of the hydrogel. Hydrogelation of CG aqueous solution by autoclaving is also physically crosslinking without any toxic additives. Further, we showed that the CG hydrogels retained favorable biological properties of the CG hydrogels prepared by freeze-thawing and subsequent autoclaving. These results indicated that CG hydrogels prepared by autoclaving were promising as wound dressings.
Collapse
|
9
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
11
|
Hou L, Wang W, Wang MK, Song XS. Acceleration of Healing in Full-Thickness Wound by Chitosan-Binding bFGF and Antimicrobial Peptide Modification Chitosan Membrane. Front Bioeng Biotechnol 2022; 10:878588. [PMID: 35547167 PMCID: PMC9081572 DOI: 10.3389/fbioe.2022.878588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Skin wound healing is an important clinical challenge, and the main treatment points are accelerating epidermal regeneration and preventing infection. Therefore, it is necessary to develop a wound dressing that can simultaneously cure bacterial infections and accelerate wound healing. Here, we report a multifunctional composite wound dressing loaded with chitosan (CS)-binding bFGF (CSBD-bFGF) and antimicrobial peptides (P5S9K). First, CS was used as the dressing matrix material, and P5S9K was encapsulated in CS. Then, CSBD-bFGF was designed by combining recombinant DNA technology and tyrosinase treatment and modified on the dressing material surface. The results show that the binding ability of CSBD-bFGF and CS was significantly improved compared with that of commercial bFGF, and CSBD-bFGF could be controllably released from the CS dressing. More importantly, the prepared dressing material showed excellent antibacterial activity in vivo and in vitro and could effectively inhibit the growth of E. coli and S. aureus. Using NIH3T3 cells as cellular models, the results showed that the CSBD-bFGF@CS/P5S9K composite dressing was a friendly material for cell growth. After cells were seeded on the composite dressing surface, collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) genes expression in cells were significantly upregulated. Finally, the full-thickness wound of the rat dorsal model was applied to analyse the tissue repair ability of the composite dressing. The results showed that the composite dressing containing CSBD-bFGF and P5S9K had the strongest ability to repair skin wounds. Therefore, the CSBD-bFGF@CS/P5S9K composite dressing has good antibacterial and accelerated wound healing abilities and has good application prospects in the treatment of skin wounds.
Collapse
Affiliation(s)
| | | | | | - Xue-Song Song
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Wang L, Li D, Shen Y, Liu F, Zhou Y, Wu H, Liu Q, Deng B. Preparation of Centella asiatica loaded gelatin/chitosan/nonwoven fabric composite hydrogel wound dressing with antibacterial property. Int J Biol Macromol 2021; 192:350-359. [PMID: 34592227 DOI: 10.1016/j.ijbiomac.2021.09.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023]
Abstract
Antibiotics abuse and the emergence of massive drug-resistant bacteria have become the major obstacles in the medical system. Thus, designing an antibiotic-free wound dressing with antibacterial activity and decent biocompatibility is urgently desired. Herein, the sandwich-like composite hydrogel wound dressings were developed by intercalating nonwoven fabrics (NF) as the middle layer, gelatin and chitosan (Gel-CS) hydrogel loaded with Centella asiatica (CA) as the base materials. In addition, soaking strategy was employed to improve the mechanical properties of hydrogels. The hydrogels exhibited uniform microporous structure, stable mechanical property, high water absorbency, as well as water vapor transmission rate. After loading with CA, the composite wound dressing showed the sustained drug release properties in vitro and excellent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The cytotoxicity results demonstrated that the composite hydrogels had good biocompatibility. This work indicates that the nonwoven composite hydrogels have broad application prospects in the field of medical care in the future.
Collapse
Affiliation(s)
- Lanlan Wang
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Dawei Li
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Ying Shen
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Feng Liu
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuqi Zhou
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Huiping Wu
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qingsheng Liu
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bingyao Deng
- Laboratory for Advanced Nonwoven Technology, Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
13
|
Jones LO, Williams L, Boam T, Kalmet M, Oguike C, Hatton FL. Cryogels: recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing. Beilstein J Org Chem 2021; 17:2553-2569. [PMID: 34760024 PMCID: PMC8551881 DOI: 10.3762/bjoc.17.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Cryogels are macroporous polymeric structures formed from the cryogelation of monomers/polymers in a solvent below freezing temperature. Due to their inherent interconnected macroporosity, ease of preparation, and biocompatibility, they are increasingly being investigated for use in biomedical applications such as 3D-bioprinting, drug delivery, wound healing, and as injectable therapeutics. This review highlights the fundamentals of macroporous cryogel preparation, cryogel properties that can be useful in the highlighted biomedical applications, followed by a comprehensive review of recent studies in these areas. Research evaluated includes the use of cryogels to combat various types of cancer, for implantation without surgical incision, and use as highly effective wound dressings. Furthermore, conclusions and outlooks are discussed for the use of these promising and durable macroporous cryogels.
Collapse
Affiliation(s)
- Luke O Jones
- Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| | - Leah Williams
- Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| | - Tasmin Boam
- Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| | - Martin Kalmet
- Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| | - Chidubem Oguike
- Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| | - Fiona L Hatton
- Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
14
|
Sievers J, Zimmermann R, Friedrichs J, Pette D, Limasale YDP, Werner C, Welzel PB. Customizing biohybrid cryogels to serve as ready-to-use delivery systems of signaling proteins. Biomaterials 2021; 278:121170. [PMID: 34628192 DOI: 10.1016/j.biomaterials.2021.121170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
Macroporous cryogels have recently gained increasing interest for the controlled administration of signaling proteins in tissue engineering due to an advantageous combination of material properties. However, most of the previously reported cryogel systems did not allow for tunable, sustained protein release. We therefore designed a set of ready-to-use multi-armed polyethylene glycol (starPEG)-heparin cryogel systems containing different amounts of the protein-affine glycosaminoglycan component heparin to enable systematically tunable long-term delivery of different signaling proteins without affecting other cell-instructive properties. Experimental data and mathematical modeling indicate that the macroporous structure causes local differences in the concentration of proteins released into the pores and in the surrounding of the cryogels. As a proof-of-concept for their ready-to-use potential, cryogels pre-functionalized with signaling proteins and cell adhesion-peptides were demonstrated to induce the neuronal differentiation of colonizing pheochromocytoma cells. The elaborated approach opens up new perspectives for cryogels as easily storable and applicable systems for the precision delivery of signaling proteins.
Collapse
Affiliation(s)
- Jana Sievers
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Ralf Zimmermann
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Jens Friedrichs
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Dagmar Pette
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Yanuar Dwi Putra Limasale
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden and Cluster of Excellence Physics of Life, 01062, Dresden, Germany.
| | - Petra Birgit Welzel
- Leibniz-Institut für Polymerforschung Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Str. 6, 01069, Dresden, Germany.
| |
Collapse
|
15
|
Macroporous zwitterionic composite cryogel based on chitosan oligosaccharide for antifungal application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112327. [PMID: 34474878 DOI: 10.1016/j.msec.2021.112327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
Chitosan oligosaccharide (COS), a time-dependent antimicrobial carbohydrate, is found antifungal active with a short duration of action due to excessive solubility. We attempted to address this issue by employing a hydrogel as a COS carrier. In this research, macroporous zwitterionic composite cryogels composed of COS and poly(N-methacryl arginine) (PMarg) were fabricated, serving as long-term antifungal dressings. Firstly, Marg was synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), 1H and 13C nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). Then, the COS/PMarg cryogels were prepared by redox initiation cryopolymerization. The macroporous morphology of the cryogels was confirmed by scanning electron microscope (SEM) with pore size varying from 20.86 to 50.87 μm. FTIR indicated that hydrogen bonding formed between COS and PMarg, and the interaction elevated thermal stability of the cryogels as evidenced by thermal-gravimetric analysis (TGA). Swelling capacity, mechanical properties, and COS release behavior of the COS/PMarg cryogels were investigated. With the release of COS, the antifouling activity of the cryogel increased. Antimicrobial tests indicated the COS/PMarg cryogel could effectively inhibit the proliferation of Candida albicans. It demonstrated that the macroporous zwitterionic COS/PMarg composite cryogel might be a potential antifungal dressing with sequential "sterilization-release" capacity.
Collapse
|
16
|
Lima TDPDL, Passos MF. Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1910-1925. [PMID: 34156314 DOI: 10.1080/09205063.2021.1946461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skin wounds are damage to the epithelial layer and the integrity of living tissue. The healing mechanism is dynamic and complex, and often treatments with wound dressings help in tissue regeneration, reducing the risk of infections. Polymeric hydrogels become good candidates for wet curing process. These materials prevent dehydration of the tissue and avoid discomfort to the patient when changing the dressing. In this short review, we demonstrate the importance of the healing process, the types of skin wounds, and the hydrogels that are potentially attractive as wound dressings.
Collapse
|
17
|
Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021; 7:79. [PMID: 34203439 PMCID: PMC8293244 DOI: 10.3390/gels7030079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| | - Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| |
Collapse
|
18
|
Zarandona I, Minh NC, Trung TS, de la Caba K, Guerrero P. Evaluation of bioactive release kinetics from crosslinked chitosan films with Aloe vera. Int J Biol Macromol 2021; 182:1331-1338. [PMID: 34000309 DOI: 10.1016/j.ijbiomac.2021.05.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Thermocompression was employed to prepare citric acid-crosslinked chitosan films with Aloe vera (AV) as bioactive compound. Films were easy to handle and mechanical properties did not change with the addition of AV up to 10 wt%, although both TS and EAB decreased for the films with 15 wt% AV, indicating that high AV contents would hinder intermolecular interactions among the formulation components. Maillard reaction occurred between chitosan and citric acid at the processing temperature used (115 °C), while physical interactions took place with AV, as shown by FTIR analysis. All films were insoluble but displayed hydration and limited swelling due to both physical and chemical interactions promoted by AV and citric acid, respectively. A slow AV release, governed by a Fickian diffusion controlled mechanism, and an increase of surface hydrophilicity, which favors cell adhesion, were observed.
Collapse
Affiliation(s)
- Iratxe Zarandona
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Nguyen Cong Minh
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu Street, Nha Trang City 650000, Viet Nam
| | - Trang Si Trung
- Faculty of Food Technology, Nha Trang University, 02 Nguyen Dinh Chieu Street, Nha Trang City 650000, Viet Nam
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
19
|
田 林, 艾克拜尔·亚森, 谭 玉, 李 发, 高 波, 程 良, 何 东, 曲 龙. [Clinical application of nose ring drain in severe diabetic foot infection]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:990-993. [PMID: 32794667 PMCID: PMC8171918 DOI: 10.7507/1002-1892.202003190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/28/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of the nose ring drain (NRD) in treatment of severe diabetic foot infection. METHODS The clinical data of 35 patients with severe diabetic foot infection who were treated with NRD between June 2017 and June 2019 were analyzed retrospectively. There were 24 males and 11 females with an average age of 54.5 years (range, 28-82 years). All of them were type 2 diabetic patients. The diabetes duration was 3-20 years, with an average of 9.4 years. The diabetic foot duration was 4 months to 2 years, with an average of 1.16 years. There were 16 cases of left foot and 19 cases of right foot. According to Wagner's grading, there were 11 cases of grade 2, 20 cases of grade 3, and 4 cases of grade 4, all of which were moderate and severe infection of diabetic foot wound. Postoperative wounds were treated with "nibble-like" debridement until the patient's epidermis regenerated and healed. During the treatment process, the indexes of bacterial culture type of wound secretions, duration of antibiotic therapy, wound healing method, healing time, amputation rate, and other indicators were analyzed and summarized. RESULTS All 35 patients were followed up 3-6 months, with an average of 4.5 months. Postoperative bacterial culture of wounds showed that 5 cases of Staphylococcus aureus, 4 cases of Pseudomonas aeruginosa, 5 cases of Escherichia coli, 3 cases of Enterobacter cloacae, 3 cases of coagulase-negative Staphylococcus, and 15 cases of other types were detected. The duration of antibiotic therapy ranged from 3 to 15 days, with an average of 9.1 days. The wound was autolytically healed without skin grafting, and the healing time was 62-82 days, with an average of 72.3 days. During the follow-up, 3 cases (8.6%) had amputation due to the patient's poor blood glucose control, which led to a large spread of infection. In addition, among the other patients with wound healing, there was no recurrence of wound infection or new ulcer on the original surface. CONCLUSION The NRD is a simple operation for treatment of severe diabetic foot infection, which can effectively control wound infections and promote wound healing and regeneration without skin grafting.
Collapse
Affiliation(s)
- 林 田
- 重庆长城医院创伤修复显微外科中心(重庆 400041)Microsurgery Center for Wound Repair, Chongqing Great Wall Hospital, Chongqing, 400041, P.R.China
| | - 艾克拜尔·亚森
- 重庆长城医院创伤修复显微外科中心(重庆 400041)Microsurgery Center for Wound Repair, Chongqing Great Wall Hospital, Chongqing, 400041, P.R.China
| | - 玉忠 谭
- 重庆长城医院创伤修复显微外科中心(重庆 400041)Microsurgery Center for Wound Repair, Chongqing Great Wall Hospital, Chongqing, 400041, P.R.China
| | - 发祥 李
- 重庆长城医院创伤修复显微外科中心(重庆 400041)Microsurgery Center for Wound Repair, Chongqing Great Wall Hospital, Chongqing, 400041, P.R.China
| | - 波 高
- 重庆长城医院创伤修复显微外科中心(重庆 400041)Microsurgery Center for Wound Repair, Chongqing Great Wall Hospital, Chongqing, 400041, P.R.China
| | - 良坤 程
- 重庆长城医院创伤修复显微外科中心(重庆 400041)Microsurgery Center for Wound Repair, Chongqing Great Wall Hospital, Chongqing, 400041, P.R.China
| | - 东 何
- 重庆长城医院创伤修复显微外科中心(重庆 400041)Microsurgery Center for Wound Repair, Chongqing Great Wall Hospital, Chongqing, 400041, P.R.China
| | - 龙 曲
- 重庆长城医院创伤修复显微外科中心(重庆 400041)Microsurgery Center for Wound Repair, Chongqing Great Wall Hospital, Chongqing, 400041, P.R.China
| |
Collapse
|
20
|
Huang L, Bi S, Pang J, Sun M, Feng C, Chen X. Preparation and characterization of chitosan from crab shell (Portunus trituberculatus) by NaOH/urea solution freeze-thaw pretreatment procedure. Int J Biol Macromol 2020; 147:931-936. [DOI: 10.1016/j.ijbiomac.2019.10.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/10/2019] [Accepted: 10/06/2019] [Indexed: 12/21/2022]
|
21
|
Fukuhara Y, Takei T, Yoshinaga T, Nishimata H, Yoshida M. Injectable Sugar Beet Pectin/Chitosan Derivative Composite Hydrogel for Wound Care. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.19we102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshiki Fukuhara
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | - Takayuki Takei
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| | | | | | - Masahiro Yoshida
- Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University
| |
Collapse
|
22
|
Gao Y, Zhang X, Jin X. Preparation and Properties of Minocycline-Loaded Carboxymethyl Chitosan Gel/Alginate Nonwovens Composite Wound Dressings. Mar Drugs 2019; 17:E575. [PMID: 31614468 PMCID: PMC6835814 DOI: 10.3390/md17100575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
As derivatives from marine natural biomaterials, alginate-based and chitosan-based biomaterials are commonly used in wound dressings. Calcium alginate fiber (CAF) dressings possess excellent absorption and unique gel forming performance, but the low bioactivity limits its application in wound healing. Carboxymethyl chitosan (CM-Chit) has excellent antibacterial activity, but the gel structure with weak mechanical properties restricts its application. In this study, minocycline (Mino)/CM-Chit solution was coated on the surface of plasma treated CAF needle-punched nonwovens, and then Mino loaded CM-Chit gel/CAF nonwovens composite dressings were fabricated by EDC/NHS (1-3-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide) crosslinking. The dressings had a porous composite structure, which allowed them to quickly absorb and store a large number of wound exudates. Skin-like tensile performance allowed the dressings to provide a better healing environment. Antibacterial assay against Escherichia coli and Staphylococcus aureus indicated that the addition of Mino significantly improved the antibacterial activity of the wound dressings. The tight structure of CM-Chit gel prevented the burst release of Mino so that the dressings had antibacterial activity in a certain period of release time. Cell culture assay showed that the dressings had excellent cell biocompatibility. As new functional dressings, the prepared composite dressings had excellent potential in the clinical healing of wounds.
Collapse
Affiliation(s)
- Yingjun Gao
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xing Zhang
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xiangyu Jin
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
23
|
Villard P, Rezaeeyazdi M, Colombani T, Joshi‐Navare K, Rana D, Memic A, Bencherif SA. Autoclavable and Injectable Cryogels for Biomedical Applications. Adv Healthc Mater 2019; 8:e1900679. [PMID: 31348620 DOI: 10.1002/adhm.201900679] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022]
Abstract
Prior to any clinical application, terminal sterilization of biomaterials is a critical process imposed by the Food and Drug Administration. Of all the methods available for sterilization, high-pressure steam sterilization such as autoclaving is the most widely used. While autoclave sterilization minimizes pathogen contamination, it can dramatically impact both structural and biological properties of biomaterials. It has recently been reported that injectable cryogels with shape memory properties hold great promises as 3D macroporous biomimetic scaffolds for biomedical applications including tissue engineering. In this study, the impact of autoclave sterilization on properties of a series of cryogels is measured. Unlike conventional hydrogels, cryogels made of natural polymers demonstrate a strong resilience to autoclave sterilization. This process does not alter either their macrostructural or unique physical properties including syringe injectability. The scaffolds' bioactive sites are preserved and autoclaved cryogels retain their excellent cytological compatibility post-autoclaving. Furthermore, autoclaved cryogels do not trigger a notable activation of primary murine bone marrow-derived dendritic cells suggesting a minimal risk for biomaterial-induced inflammation, which is further confirmed by an in vivo histologic analysis. In summary, these results further demonstrate the huge potential of cryogels in the biomedical field and their capacity to be translated into clinical applications.
Collapse
Affiliation(s)
- Pierre Villard
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | | | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | | | - Devyesh Rana
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
| | - Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02215 USA
- Department of BioengineeringNortheastern University Boston MA 02215 USA
- John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Laboratory of Biomechanics & Bioengineering (BMBI)Sorbonne UniversityUniversity of Technology of Compiègne (UTC) 60200 Compiègne France
| |
Collapse
|
24
|
Uzunoğlu G, Çimen D, Bereli N, Çetin K, Denizli A. Cholesterol removal from human plasma with biologically modified cryogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1276-1290. [PMID: 31156065 DOI: 10.1080/09205063.2019.1627652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, low molecular weight heparin immobilized P(HEMA) cryogels were fabricated for the removal of LDL-C in hypercholesterolemic human plasma. After characterization studies for P(HEMA) cryogels, effects of the parameters including medium pH, CNBr concentration, heparin concentration and contact time on heparin immobilization were investigated. Blood compatibility and cell adhesion tests were also performed, and platelet and leucocyte loss for P(HEMA)-Hp cryogels were found to be 2.95% and 4.91%, respectively. Maximum adsorption capacity for LDL-C from hypercholesterolemic human plasma was found to be 26.7 mg/g for P(HEMA)-Hp cryogel while it was only 1.67 mg/g for bare P(HEMA) cryogel. The P(HEMA)-Hp cryogels exhibit high desorption ratios up to 96% after 10 adsorption-desorption cycles with no significant decrease in the adsorption capacity. The findings indicated that these reusable P(HEMA)-based cryogels proposed good alternative adsorbents for removal of LDL-C.
Collapse
Affiliation(s)
- Gizem Uzunoğlu
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Duygu Çimen
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Nilay Bereli
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| | - Kemal Çetin
- b Biochemistry Division, Department of Chemistry, Faculty of Science , Necmettin Erbakan University , Konya , Turkey
| | - Adil Denizli
- a Biochemistry Division, Department of Chemistry , Hacettepe University , Ankara , Turkey
| |
Collapse
|
25
|
Li Y, Zhu C, Fan D, Fu R, Ma P, Duan Z, Li X, Lei H, Chi L. Construction of porous sponge-like PVA-CMC-PEG hydrogels with pH-sensitivity via phase separation for wound dressing. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, Shaanxi, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, Shaanxi, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, Shaanxi, China
| | - Pei Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, Shaanxi, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, Shaanxi, China
| | - Xian Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, Shaanxi, China
| | - Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi’an, Shaanxi, China
| | - Lei Chi
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an, China
| |
Collapse
|
26
|
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263:131-194. [PMID: 30530176 DOI: 10.1016/j.cis.2018.11.008] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 01/06/2023]
Abstract
Chitosan (CS) is a linear polysaccharide which is achieved by deacetylation of chitin, which is the second most plentiful compound in nature, after cellulose. It is a linear copolymer of β-(1 → 4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose and 2-amino-2-deoxy-β-d-glucopyranose. It has appreciated properties such as biocompatibility, biodegradability, hydrophilicity, nontoxicity, high bioavailability, simplicity of modification, favorable permselectivity of water, outstanding chemical resistance, capability to form films, gels, nanoparticles, microparticles and beads as well as affinity to metals, proteins and dyes. Also, the biodegradable CS is broken down in the human body to safe compounds (amino sugars) which are easily absorbed. At present, CS and its derivatives are broadly investigated in numerous pharmaceutical and medical applications including drug/gene delivery, wound dressings, implants, contact lenses, tissue engineering and cell encapsulation. Besides, CS has several OH and NH2 functional groups which allow protein binding. CS with a deacetylation degree of ~50% is soluble in aqueous acidic environment. While CS is dissolved in acidic medium, its amino groups in the polymeric chains are protonated and it becomes cationic which allows its strong interaction with different kinds of molecules. It is believed that this positive charge is responsible for the antimicrobial activity of CS through the interaction with the negatively charged cell membranes of microorganisms. This review presents properties and numerous applications of chitosan-based compounds in drug delivery, gene delivery, cell encapsulation, protein binding, tissue engineering, preparation of implants and contact lenses, wound healing, bioimaging, antimicrobial food additives, antibacterial food packaging materials and antibacterial textiles. Moreover, some recent molecular dynamics simulations accomplished on the pharmaceutical applications of chitosan were presented.
Collapse
|
27
|
Ran L, Zou Y, Cheng J, Lu F. Silver nanoparticles in situ synthesized by polysaccharides from Sanghuangporus sanghuang and composites with chitosan to prepare scaffolds for the regeneration of infected full-thickness skin defects. Int J Biol Macromol 2018; 125:392-403. [PMID: 30529352 DOI: 10.1016/j.ijbiomac.2018.12.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
In recent years, silver nanoparticles have widely been used in antibacterial dressings to solve antibiotic resistance problems. However, traditional methods for reducing silver nanoparticles are usually toxic. To overcome this problem, Sanghuangporus sanghuang polysaccharides (FSHPs) were used as a green reducing agent to prepare silver nanoparticles (AgNPs) with a size of 3-35 nm. The FSHPs‑silver nanoparticles (FSHPs-Ag) composite with chitosan solution were then freeze-dried to obtain a porous sponge dressing of chitosan-FSHPs-Ag (CS-FSHPs-Ag). The internal pores of CS-FSHPs-Ag were between 50 and 100 μm and had good swelling and water retention properties, which could provide a moist environment for wounds. Based on the experimental results, the appropriate concentration of AgNPs required for CS-FSHPs-Ag to inhibit Escherichia coli and Staphylococcus aureus was determined. Moreover, there was no statistically significant difference between the material treatment and the blank control group, indicating that the material almost showed no toxicity to L929 cells. Finally, this material was used for dressing animal wounds. The results showed that the CS-FSHPs-Ag promoted wound contraction and internal tissue growth better than the wounds treated with Aquacel® Ag, which indicated that the CS-FSHPs-Ag has a great potential as an ideal wound dressing material.
Collapse
Affiliation(s)
- Luoxiao Ran
- College of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Yini Zou
- College of Textile and Garments, Southwest University, Chongqing 400715, China
| | - Junwen Cheng
- The Key Laboratory of Biological and Chemical Utilization of Zhejiang Province, Zhejiang Forestry Academy, Hangzhou 310023, China
| | - Fei Lu
- College of Textile and Garments, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|