1
|
Miyawaki A, Sakai S. Immobilization of laccases on mechanically ground silk fibroin nanofibers for enhanced stability. Int J Biol Macromol 2024; 282:136745. [PMID: 39433192 DOI: 10.1016/j.ijbiomac.2024.136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Azo dyes in textile industry effluents pose significant health and environmental risks. Laccase is an enzyme capable of degrading azo dyes, offering an environmentally friendly solution for treating textile wastewater. However, laccases need to be immobilized on specific carriers to enable effective reuse in batch reactors and continuous operation in flow-through reactors. This study employed silk fibroin nanofibers (SFNFs) obtained by mechanically grinding degummed silkworm silk as sustainable carriers to immobilize laccases through carbodiimide-mediated crosslinking. The immobilized laccases (SFNF-laccases) exhibited improved pH tolerance in the range of pH 3.0-8.0 with a smaller reduction in activity compared to free laccases (SFNF-laccases: 32.9 %, free laccases: 50.4 %). The thermal stability of immobilized laccases was also improved, showing 19, 13, and 9 % higher activities than those of free laccases at 40, 50, and 60 °C, respectively. After 8 days of storage, the activity of SFNF-laccases was 79 % of their activity immediately after immobilization, whereas free laccases retained only 29 % of their initial activity. In addition, SFNF-laccases maintained 73 % of their original operational activity in a flow-through reactor after 8 days. These results demonstrate the great potential of mechanically ground SFNFs as carriers of laccase and the resulting SFNF-laccases in industrial wastewater treatment.
Collapse
Affiliation(s)
- Ayari Miyawaki
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Shinji Sakai
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
2
|
Chen L, Zhao X, Yang L, Guo S, Park E, Zhao B, Han XX, Jung YM. Three-dimensional NTF-Ag composites for ultrasensitive SERS-based detection of malachite green on crucian carp skin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125266. [PMID: 39413607 DOI: 10.1016/j.saa.2024.125266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Three-dimensional (3D) Na2Ti3O7 flower (NTF) systems were synthesized, followed by sputter coating with silver (Ag) nanoparticles to increase surface-enhanced Raman scattering (SERS) activity. By varying the sputtering time, SERS activity of the Ag-decorated NTF (NTF-Ag) structures was optimized. Furthermore, the theoretical evidence from finite difference time domain (FDTD) simulations confirmed that an appropriate density of Ag particles increased the electromagnetic field contribution. The electromagnetic field contribution is high because the special petal-shaped structure can promote multiple reflections and scattering, thus providing efficient resonance absorption for charge-transfer (CT) and exciton enhancements. Highly SERS-active NTF-Ag composites were developed and exploited for the detection of malachite green (MG), a model contaminant in the food industry. The detection limit of this method for MG reached 3.78 × 10-10 M, with a standard deviation of homogeneity of 6.83 %. This method was successfully applied to detect MG on crucian carp skin, and it showed high recovery, indicating that it can serve as a practical method for MG evaluation. All results demonstrated that the prepared NTF-Ag composite has great potential in the application of SERS-based contamination assessment in the food industry.
Collapse
Affiliation(s)
- Lei Chen
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China; College of Chemistry, Jilin Normal University, Siping, Jilin, 136000, China
| | - Xingyu Zhao
- College of Chemistry, Jilin Normal University, Siping, Jilin, 136000, China
| | - Lu Yang
- College of Chemistry, Jilin Normal University, Siping, Jilin, 136000, China
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Eungyeong Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Bing Zhao
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Xiao Xia Han
- Stake Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
3
|
Dai L, Yang M, Jiang S, Tang H, Ren E, Xiao H, Liu L, Guo R. N-doped lignin-based activated carbon aerogel derived from bamboo black pulp liquor for efficient removal of malachite green in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51325-51343. [PMID: 39107641 DOI: 10.1007/s11356-024-34564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/25/2024] [Indexed: 09/06/2024]
Abstract
In this study, a lignin-based aerogel (LA) was prepared through acid precipitation of BPBL, followed by sol-gel method and freeze-drying. Additionally, a one-step activation-carbonization method was used to acquire nitrogen-doped lignin-based activated carbon aerogel (NLACA). The adsorption and catalytic degradation performance for malachite green (MG) were examined. The specific surface area of NLACA after N-doping was 2644.5 m2/g. The adsorption capacity for MG was increased to 3433 mg/g with the presence of nitrogenous functional groups on surface of NLACA compared without N-doping. Meanwhile, non-radical singlet oxygen is the primary active substance and degradation efficiency arrives at 91.8% after the catalytic degradation within 20 min and it has good stability and reuse. Three possible degradation pathways during degradation were analyzed by LC-MS technique. The adsorption isotherm and kinetic data demonstrated conformity with both the Langmuir model and the pseudo-second-order kinetic model. The primary mechanisms of the adsorption for MG dyes on NLACA include hydrogen bonding, π-π interactions, attraction of electrostatic and pore filling. Hence, NLACA derived from BPBL acts as a cost-effective and high-performance adsorbent and catalyst for removal of MG in dye wastewater. This concept introduces an innovative approach of "treatment of waste with waste" for developing a low-consumption, high-efficiency dye wastewater treatment and provides significant reference to treatment dye wastewater.
Collapse
Affiliation(s)
- Lanling Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Mengyuan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tang
- Graduate School of Energy Science, Kyoto University, Kyoto, Japan
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongyan Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou, 215123, China.
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, NanChang, China.
| |
Collapse
|
4
|
Naseem S, Rawal RS, Pandey D, Suman SK. Immobilized laccase: an effective biocatalyst for industrial dye degradation from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84898-84917. [PMID: 37369903 DOI: 10.1007/s11356-023-28275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Environmental concerns due to the release of industrial wastewater contaminated with dyes are becoming more and more intense with the increasing industrialization. Decolorization of industrial effluents has become the top priority due to the continuous demand for color-free discharge into the receiving water bodies. Different dye removal techniques have been developed, among which biodegradation by laccase enzyme is competitive. Laccase, as a green catalyst, has a high catalytic activity, generates less toxic by-products, and has been extensively researched in the field of remediation of dyes. However, laccase's significant catalytic activity could only be achieved after an effective immobilization step. Immobilization helps strengthen and stabilize the protein structure of laccase, thus enhancing its functional properties. Additionally, the reusability of immobilized laccase makes it an attractive alternative to traditional dye degradation technologies and in the realistic applications of water treatment, compared with free laccase. This review has elucidated different methods and the carriers used to immobilize laccase. Furthermore, the role of immobilized laccase in dye remediation and the prospects have been discussed.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248005, Uttarakhand, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Umar E, Ikram M, Haider J, Nabgan W, Imran M, Nazir G. A State-of-Art Review of the Metal Oxide-Based Nanomaterials Effect on Photocatalytic Degradation of Malachite Green Dyes and a Bibliometric Analysis. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300001. [PMID: 37287595 PMCID: PMC10242535 DOI: 10.1002/gch2.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/19/2023] [Indexed: 06/09/2023]
Abstract
A wide range of hard contaminants in wastewater is generated from different industries as byproducts of the organic compound. In this review, various metal oxide-based nanomaterials are employed for the photocatalytic removal of malachite green (MG) dye from wastewater. Some cost-effective and appropriate testing conditions are used for degrading these hard dyes to get higher removal efficiency. The effects of specific parameters are considered such as how the catalyst is made, how much dye is in the solution at first, how much nanocatalyst is needed to break down the dye, the initial pH of the dye solution, the type of light source used, the year of publications, and how long the dye has to be exposed to light to be removed. This study suggests that Scopus-based core collected data employ bibliometric methods to provide an objective analysis of global MG dye from 2011 to 2022 (12 years). The Scopus database collects all the information (articles, authors, keywords, and publications). For bibliometric analysis, 658 publications are retrieved corresponding to MG dye photodegradation, and the number of publications increases annually. A bibliometric study reveals a state-of-art review of metal oxide-based nanomaterials' effects on photocatalytic degradation of MG dyes (12 years).
Collapse
Affiliation(s)
- Ehtisham Umar
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research LabDepartment of PhysicsGovernment College University LahoreLahore54000Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308China
| | - Walid Nabgan
- Departament d'Enginyeria QuímicaUniversitat Rovira i VirgiliAv Països Catalans 26Tarragona43007Spain
| | - Muhammad Imran
- Department of ChemistryGovernment College University FaisalabadPakpattan RoadSahiwalPunjab57000Pakistan
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoul05006Republic of Korea
| |
Collapse
|
6
|
Chen Z, Oh WD, Yap PS. Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. CHEMOSPHERE 2022; 307:135824. [PMID: 35944673 DOI: 10.1016/j.chemosphere.2022.135824] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds such as phenol, bisphenol A, 2,4-dichlorophenol, 2,4-dinitrophenol, 4-chlorophenol and 4-nitrophenol are well known to be highly detrimental to both human and living beings. Thus, it is of critical importance that suitable remediation technologies are developed to effectively remove phenolic compounds from aqueous solutions. Biodegradation utilizing enzymatic technologies is a promising biotechnological solution to sustainably address the pollution in the aquatic environment as caused by phenolic compounds under a defined environmentally optimized strategy and thus should be investigated in great detail. This review aims to present the latest developments in the employment of immobilized laccase for the degradation of phenolic compounds in water. The review first succinctly delineates the fundamentals of biological enzyme degradation along with a critical discussion on the myriad types of laccase immobilization techniques, which include physical adsorption, ionic adsorption, covalent binding, entrapment, and self-immobilization. Then, this review presents the major properties of immobilized laccase, namely pH stability, thermal stability, reusability, and storage stability, as well as the degradation efficiencies and associated kinetic parameters. In addition, the optimization of the immobilized enzyme, specifically on laccase immobilization methods and multi-enzyme system are critically discussed. Finally, pertinent future perspectives are elucidated in order to significantly advance the developments of this research field to a higher level.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
7
|
Wang Z, Ren D, Zhang X, Zhang S, Chen W. Adsorption-degradation of malachite green using alkali-modified biochar immobilized laccase under multi-methods. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Mohammadi SA, Najafi H, Zolgharnian S, Sharifian S, Asasian-Kolur N. Biological oxidation methods for the removal of organic and inorganic contaminants from wastewater: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157026. [PMID: 35772531 DOI: 10.1016/j.scitotenv.2022.157026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Enzyme-based bioremediation is a simple, cost-effective, and environmentally friendly method for isolating and removing a wide range of environmental pollutants. This study is a comprehensive review of recent studies on the oxidation of pollutants by biological oxidation methods, performed individually or in combination with other methods. The main bio-oxidants capable of removing all types of pollutants, such as organic and inorganic molecules, from fungi, bacteria, algae, and plants, and different types of enzymes, as well as the removal mechanisms, were investigated. The use of mediators and modification methods to improve the performance of microorganisms and their resistance under harsh real wastewater conditions was discussed, and numerous case studies were presented and compared. The advantages and disadvantages of conventional and novel immobilization methods, and the development of enzyme engineering to adjust the content and properties of the desired enzymes, were also explained. The optimal operating parameters such as temperature and pH, which usually lead to the best performance, were presented. A detailed overview of the different combination processes was also given, including bio-oxidation in coincident or consecutive combination with adsorption, advanced oxidation processes, and membrane separation. One of the most important issues that this study has addressed is the removal of both organic and inorganic contaminants, taking into account the actual wastewaters and the economic aspect.
Collapse
Affiliation(s)
- Seyed Amin Mohammadi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Hanieh Najafi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Sheida Zolgharnian
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Seyedmehdi Sharifian
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Neda Asasian-Kolur
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran.
| |
Collapse
|
9
|
Deng J, Wang H, Zhan H, Wu C, Huang Y, Yang B, Mosa A, Ling W. Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor. CHEMOSPHERE 2022; 301:134753. [PMID: 35490752 DOI: 10.1016/j.chemosphere.2022.134753] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
The capability of laccase to oxidate a broad range of polyphenols and aromatic substrates in vitro offers a new technological option for the remediation of polycyclic aromatic hydrocarbon (PAH) pollution with high cytotoxicity. However, laccase application in the remediation of PAH-contaminated sites mainly suffers from a low oxidation rate and high cost because of the difficulty in its recovery. In this study, laccases were immobilized on magnetic Fe3O4 particles coated with chitosan (Fe3O4@SiO2-chitosan) to improve the operational stability and reusability in the treatment of PAH pollution. The enzyme fixation capacity reached 158 mg g-1, and 79.1% of free laccase activities were reserved under the optimum immobilized condition of 4% glutaraldehyde, 1.0 mg mL-1 laccase, 2 h covalent bonding time, and 6 h fixation time. The degradation efficiencies of anthracene (ANT) and benzo[a]pyrene (B(a)P) by Fe3O4@SiO2-chitosan immobilized laccase in 48 h were 81.9% and 69.2%, respectively. Furthermore, it is very easy to magnetically recover the immobilized laccase from reaction systems and reuse it in a new batch. The relative activities of immobilized laccase were over 50% for the degradation of ANT and B(a)P in three catalytic runs, reaching the goal of substantially reducing cost in practice. According to the results from quantum calculations and mass spectrum analyses, the degradation products of ANT and B(a)P by laccase were anthraquinone and B(a)P-dione, respectively. The findings from this study provide valuable insight in promoting the application of immobilized laccase technology in the remediation of PAH contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Haisheng Zhan
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chenxi Wu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Huang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Science, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
10
|
Song X, Ren X, Tang D, Li X. Specific iodide effect on surface-enhanced Raman scattering for ultra-sensitive detection of organic contaminants in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120950. [PMID: 35151171 DOI: 10.1016/j.saa.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/27/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Ultra-sensitive detection of target molecules by surface-enhanced Raman scattering (SERS) is crucial in a wide range of fields but remains a great challenge. In this work, we report a simple and effective protocol for obtaining highly SERS-sensitive probe by mixing iodide with silver sol. The specific iodide effect on the SERS sensitivity is systematically investigated. It is found that, iodide can effectively promote the SERS enhancement of anionic and cationic analytes, and I- ion has a higher activating effect on SERS than that of Cl- ion. The as-prepared SERS-active substrate demonstrates excellent enhancement for rhodamine 6G with a high Raman enhancement factor of 1.8 × 108, which allows the detection limit of 1.0 × 10-13 M. Our findings in this work should be important for the developing of SERS theory and ultra-sensitive detection applications.
Collapse
Affiliation(s)
- Xinyue Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaohui Ren
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| | - Dongyan Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Zhang Y, Xue C, Li P, Cui S, Cui D, Jin H. Metal-organic framework engineered corn-like SERS active Ag@Carbon with controllable spacing distance for tracking trace amount of organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127686. [PMID: 34775316 DOI: 10.1016/j.jhazmat.2021.127686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Probing water-soluble organic compounds via Surface-enhanced Raman scattering (SERS) technique could be helpful to prevent harmful impacts of polluted water. A key limitation of restraining SERS technique in probing these pollutants is the difficulty to control the spacing distance of plasmonic nanoparticles within 10 nm so that SERS effect can be efficiently induced. Herein, a strategy of mass-producing Ag-based SERS active material with tunable spacing distance is reported. In brevity, metal-organic framework (MOF) engineered corn-like Ag@Carbon is synthesized by simply thermal treating Ag-MOF. The thermal treatment in-situ turns Ag+ into Ag nanoparticles (NPs), resulting in Ag NPs well-dispersed on the surface of the carbonized MOF and forming ordered SERS hotspots. Due to the spatial distance of Ag+ directly depends on the molecular diameter of MOF organic ligands, spacing distance of Ag NP is fixed at around 7 nm. Theoretical analysis and experimental study confirm that the uniformly distributed Ag NPs lead to desirable SERS activity. Further study evidences the presented corn-like Ag@Carbon could be a good candidate for tacking organic compounds with satisfactory sensitivity, specificity and low detection limit (10-8 M). Conclusively, these impressive results indicate a bright future of adopting the proposed strategy to design future SERS active materials.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; National Engineering Research Center for Nanotechnology, Shanghai 200241, PR China.
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; National Engineering Research Center for Nanotechnology, Shanghai 200241, PR China.
| |
Collapse
|
12
|
Enhanced photocatalytic degradation of rhodamine B and malachite green employing BiFeO3/g-C3N4 nanocomposites: An efficient visible-light photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Li Z, Zhu Q, Liu Z, Sha L, Chen Z. Improved performance of immobilized laccase for catalytic degradation of synthetic dyes using redox mediators. NEW J CHEM 2022. [DOI: 10.1039/d2nj00049k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laccase is an important biodegradation agent as the catalytic degradation could be enhanced in the presence of redox mediators. This work aims to improve removal performance of the immobilized laccase...
Collapse
|
14
|
Immobilization of Escherichia coli cells harboring a nitrilase with improved catalytic properties though polyethylenemine-induced silicification on zeolite. Int J Biol Macromol 2021; 193:1362-1370. [PMID: 34740683 DOI: 10.1016/j.ijbiomac.2021.10.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/18/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
In the chemical-biological synthesis route of gabapentin, immobilized Escherichia coli cells harboring nitrilase are used to catalyze the biotransformation of intermediate 1-cyanocyclohexaneacetonitile to 1-cyanocyclohexaneacetic acid. Herein, we present a novel cell immobilization method, which is based on cell adsorption using 75 g/L Escherichia coli cells and 6 g/L zeolite, cell crosslinking using 3 g/L polyethylenemine and biomimetic silicification using 18 g/L hydrolyzed tetramethylorthosilicate. The constructed "hybrid biomimetic silica particles (HBSPs)" with core-shell structure showed a specific activity of 147.2 ± 2.3 U/g, 82.6 ± 2.8% recovery of nitrilase activity and a half-life of 19.1 ± 1.9 h at 55 °C. 1-Cyanocyclohexaneacetonitrile (1.0 M) could be completely hydrolyzed by 50 g/L of HBSPs at pH 7.5, 35 °C in 4 h, providing 92.1 ± 3.2% yield of 1-cyanocyclohexaneacetic acid. In batch reactions, the HBSPs could be reused for 13 cycles and maintained 79.9 ± 4.1% residual activity after the 10th batch, providing an average product yield of 92.6% in the first 10 batches with a productivity of 619.3 g/L/day. In addition, multi-layer structures consisting of silica coating and polyethylenemine/glutaraldehyde crosslinking were constructed to enhance the mechanical strength of immobilized cells, and the effects of coating layers on the catalytic properties of immobilized cells was discussed.
Collapse
|
15
|
Gu Y, Yuan L, Jia L, Xue P, Yao H. Recent developments of a co-immobilized laccase-mediator system: a review. RSC Adv 2021; 11:29498-29506. [PMID: 35479547 PMCID: PMC9040808 DOI: 10.1039/d1ra05104k] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
The laccase-mediator is a promising biocatalyst with many possible applications, including bioremediation, chemical synthesis, biobleaching of paper pulp, biosensing, textile finishing and wine stabilization. The immobilization of laccase and the mediator offers several improvements for laccase-mediator system applications because the storage and operational stabilities are frequently enhanced. Moreover, the reusability of the immobilized laccase and mediator represents a great advantage compared with the free laccase and mediator. In this work, we review the methods of co-immobilization of the laccase-mediator system for the first time systematically and comprehensively. In addition, we discuss the different methodologies of laccase and mediator immobilization that have been reported.
Collapse
Affiliation(s)
- Yaohua Gu
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University Yinchuan 750004 China
| | - Lin Yuan
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University Yinchuan 750004 China
| | - Leina Jia
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University Yinchuan 750004 China
| | - Ping Xue
- College of Chemistry & Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Huiqin Yao
- School of Basic Medical Sciences, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
16
|
Ge Z, Wu B, Sun T, Qiao B. Laccase-like nanozymes fabricated by copper and tannic acid for removing malachite green from aqueous solution. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04867-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Zhuo R, Fan F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146132. [PMID: 33714829 DOI: 10.1016/j.scitotenv.2021.146132] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/14/2023]
Abstract
Environmental problems resultant from organic pollutants are a major current challenge for modern societies. White rot fungi (WRF) are well known for their extensive organic compound degradation abilities. The unique oxidative and extracellular ligninolytic systems of WRF that exhibit low substrate specificity, enable them to display a considerable ability to transform or degrade different environmental contaminants. In recent decades, WRF and their ligninolytic enzymes have been widely applied in the removal of polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds (PhACs), endocrine disruptor compounds (EDCs), pesticides, synthetic dyes, and other environmental pollutants, wherein promising results have been achieved. This review focuses on advances in WRF-based bioremediation of organic pollutants over the last 10 years. We comprehensively document the application of WRF and their lignocellulolytic enzymes for removing organic pollutants. Moreover, potential problems and intriguing observations that are worthy of additional research attention are highlighted. Lastly, we discuss trends in WRF-remediation system development and avenues that should be considered to advance research in the field.
Collapse
Affiliation(s)
- Rui Zhuo
- Institute of Plant and Microbiology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - Fangfang Fan
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Sun B, Li S, Jiang X, Zhu X, Kong XZ. Synthesis of post‐modified poly(ester‐amino) microspheres via
aza‐Michael
precipitation polymerization and its use for enzyme immobilization. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bo Sun
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| | - Xiang Z. Kong
- College of Chemistry and Chemical Engineering University of Jinan Jinan China
| |
Collapse
|
19
|
Lu J, Zhou Y, Lei J, Ao Z, Zhou Y. Fe 3O 4/graphene aerogels: A stable and efficient persulfate activator for the rapid degradation of malachite green. CHEMOSPHERE 2020; 251:126402. [PMID: 32151813 DOI: 10.1016/j.chemosphere.2020.126402] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/23/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Encapsulation metal oxides into carbon frameworks is a good strategy to synthesis high activity and stable catalyst. Here, Fe3O4 nanoparticles (∼20 nm) were firmly encapsulated in the graphene aerogels by a simple and environmentally friendly method (Fe3O4/GAs), for activating persulfate (PS) to degrade malachite green (MG) under simulated sunlight. A strong electron conduction was generated between the Fe3O4 nanoparticles and graphene sheets to improve the cycle of Fe(II)/Fe(III), and the MG degradation over a wide pH rage (3-9) was enhanced greatly. The MG molecule was decomposed into 12 intermediates and two possible pathways was proposed. More importantly, toxicity test and Toxicity Estimation Software (T.E.S.T.) proved that the toxicity of MG can be effectively controlled by Fe3O4/GAs + PS + light system. In addition to the high catalytic activity, Fe3O4/GAs exhibited a good stability and reusability due to the strong interaction between Fe3O4 and graphene layers. The degradation efficiency remained above 87% after six cycles, and the leaching amount of iron in each cycle was less than 0.125 wt%. SO4•- was the dominate radical for MG degradation and the heterogeneous Fenton-like reaction was mainly performed on the surface of catalyst. This work lay a foundation for applying Fe3O4/GAs as a highly efficient, stable and reusable heterogeneous Fenton-like catalyst for future applications.
Collapse
Affiliation(s)
- Jian Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Juying Lei
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China
| | - Zhimin Ao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
20
|
Xie Y, Huang J, Dong H, Wu T, Yu L, Liu G, Yu Y. Insight into performance and mechanism of tea polyphenols and ferric ions on reductive decolorization of malachite green cationic dye under moderate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110226. [PMID: 32148296 DOI: 10.1016/j.jenvman.2020.110226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Dye decolorization is of crucial concern for effectively treating dye wastewater. In this study, rapid and effective decolorization of malachite green cationic dye was achieved by tea polyphenols and ferric ions under moderate conditions. Approximately 96.2% of decolorization efficiency could be obtained within the first 10 min at the initial dye concentration of 50 mg/L. The proposed method can perform excellently in a wide pH range of 5-9 and decolorization kinetics of malachite green under different solution pH were well fitted by the pseudo-second-order model. After the decolorization, only a slight reduction of tea polyphenols was observed, while the strength of peaks assigned to nitrogen-containing groups was significantly weakened, indicating that the N-demethylation reaction might occur during the decolorization process. The nucleophilic attack of deprotonated hydroxyl groups of tea polyphenols was proposed as the decolorization mechanism. The presence of ferric ions at an appropriate dosage could promote the deprotonation process and therefore enhance decolorization efficiency, while excess ferric ions in solution might compete with malachite green dye towards reductive sites on tea polyphenols. The findings from this study provided an economical and environmentally friendly technique for the effective decolorization of dye wastewater.
Collapse
Affiliation(s)
- Yiqiao Xie
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jiawei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Haojie Dong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Tong Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ling Yu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yang Yu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
21
|
Lu J, Zhang C, Leong HY, Show PL, Lu F, Lu Z. Overproduction of lipoxygenase from Pseudomonas aeruginosa in Escherichia coli by auto-induction expression and its application in triphenylmethane dyes degradation. J Biosci Bioeng 2020; 129:327-332. [DOI: 10.1016/j.jbiosc.2019.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/10/2019] [Accepted: 09/07/2019] [Indexed: 01/28/2023]
|
22
|
Sun T, Fu M, Xing J, Ge Z. Magnetic nanoparticles encapsulated laccase nanoflowers: evaluation of enzymatic activity and reusability for degradation of malachite green. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:29-39. [PMID: 32293586 DOI: 10.2166/wst.2020.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic laccase nanoflowers (MNFs-Lac) were successfully prepared through encapsulating Fe3O4 magnetic nanoparticles into the interior of laccase nanoflowers by grafting N-(phosphonomethyl)iminodiacetic acid (PMIDA) as an interconnecting bridge between the magnetic nanoparticles and copper ions. The characterizations by scanning electron microscopy and transmission electron microscopy showed that MNFs-Lac were spherical, porous and flower-like crystals with diameters of ∼10 μm, and Fe3O4 nanoparticles were encapsulated in the interior of MNFs-Lac evenly. The enzymatic activity and reusability of MNFs-Lac were evaluated based on the degradation efficiency for malachite green (MG). The degradation parameters, concerning initial MG concentration, dosage of MNFs-Lac, reaction temperature, pH value and reaction time, were optimized through single-factor experiments. Under the optimal conditions, 25 mg·L-1 MG can be degraded almost completely by 1.5 g·L-1 MNFs-Lac within 15 min. When the MNFs-Lac were reused for 18 times, the degradation efficiency of MG was still as high as 90%. These results suggested that the modified preparation method improved greatly the reusability of MNFs-Lac, which made them more suitable to degrade MG in a water environment.
Collapse
Affiliation(s)
- Tingting Sun
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China E-mail:
| | - Meihua Fu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China E-mail:
| | - Jinfeng Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China E-mail:
| | - Zhiqiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China E-mail:
| |
Collapse
|
23
|
Wu L, Xu Z, Meng Q, Xiao Y, Cao Q, Rathi B, Liu H, Han G, Zhang J, Yan J. A new aptamer/black phosphorous interdigital electrode for malachite green detection. Anal Chim Acta 2019; 1099:39-45. [PMID: 31986275 DOI: 10.1016/j.aca.2019.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 01/13/2023]
Abstract
Malachite Green (MG), a cationic triphenylmethane dye, has adverse effects on the immune and reproductive system. Thus, it is essential to develop a rapid, sensitive and high-selective method for determination of MG. Black phosphorus (BP) has high charge-carrier mobility (∼1000 cm2 V-1 s-1) and high adsorption capacity for cationic dyes (i.e. MG) through both electrostatic and hydrophobic interactions. Thus, it potentially plays as a high-sensitive sensing platform for detecting MG. However, BP degrades within 12 h under humid condition, which limits its applications. To overcome this issue, cysteine (CYS) is used for protecting BP from oxidation and ceasing its degradation. To the best of our knowledge, it is the first time that CYS is used to functionalize BP, and a silicon interdigital electrode is fabricated with the functionalized BP and aptamer. The BP-based interdigital electrode shows a lowest detection limit of 0.3 ng L-1 toward MG. This work provides a new route to prepare a large scale and selective biosensor for MG monitoring on site in future.
Collapse
Affiliation(s)
- Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Zhiyuan Xu
- College of Information, North China University of Technology, Beijing, 100043, China
| | - Qingyi Meng
- College of Information, North China University of Technology, Beijing, 100043, China
| | - Yushi Xiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Brijesh Rathi
- Department of Chemistry, Hansraj College University of Delhi, Delhi, 110007, India
| | - Huan Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jing Zhang
- College of Information, North China University of Technology, Beijing, 100043, China
| | - Jiang Yan
- College of Information, North China University of Technology, Beijing, 100043, China
| |
Collapse
|
24
|
Zhao Y, Song Y, Zhang Y, Fan Y, Lai K. Ultra sensitive detection of malachite green in fish muscle with gold nanoparticles and graphene oxide hybrid as a substrate for surface enhanced Raman scattering. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00312-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Maryskova M, Rysova M, Novotny V, Sevcu A. Polyamide-Laccase Nanofiber Membrane for Degradation of Endocrine-Disrupting Bisphenol A, 17α-ethinylestradiol, and Triclosan. Polymers (Basel) 2019; 11:polym11101560. [PMID: 31557869 PMCID: PMC6835364 DOI: 10.3390/polym11101560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 01/20/2023] Open
Abstract
Contamination of potable water by endocrine disrupting chemicals (EDCs) is a growing problem worldwide. One of the possible treatments is the utilization of laccase enzyme catalyzing oxidation of phenolic structures of EDC when anchored in a polymeric nanofiber membrane. Previous studies failed to develop a membrane with a sufficiently active enzyme, or the immobilization process was too complicated and time-consuming. Here, we established an elegant method for immobilizing Trametes versicolor laccase onto polyamide 6 nanofibers (PA6-laccase) via adsorption and glutaraldehyde crosslinking, promoting high enzyme activity and easier applicability in water treatment technology. This simple and inexpensive immobilization ensures both repeated use, with over 88% of initial activity retained after five ABTS catalytic cycles, and enhanced storage stability. PA6-laccase was highly effective in degrading a 50-µM EDC mixture, with only 7% of bisphenol A, 2% of 17α-ethinylestradiol, and 30% of triclosan remaining after a 24-h catalytic process. The PA6-laccase membrane can lead to the improvement of novel technologies for controlling of EDC contamination in potable water.
Collapse
Affiliation(s)
- Milena Maryskova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic.
| | - Miroslava Rysova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic.
| | - Vit Novotny
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic.
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, 46117 Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic.
| |
Collapse
|
26
|
Atacan K, Güy N, Çakar S, Özacar M. Efficiency of glucose oxidase immobilized on tannin modified NiFe2O4 nanoparticles on decolorization of dye in the Fenton and photo-biocatalytic processes. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111935] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Laccase Immobilized onto Zirconia⁻Silica Hybrid Doped with Cu 2+ as an Effective Biocatalytic System for Decolorization of Dyes. MATERIALS 2019; 12:ma12081252. [PMID: 30995753 PMCID: PMC6514565 DOI: 10.3390/ma12081252] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Nowadays, novel and advanced methods are being sought to efficiently remove dyes from wastewaters. These compounds, which mainly originate from the textile industry, may adversely affect the aquatic environment as well as living organisms. Thus, in presented study, the synthesized ZrO2–SiO2 and Cu2+-doped ZrO2–SiO2 oxide materials were used for the first time as supports for laccase immobilization, which was carried out for 1 h, at pH 5 and 25 °C. The materials were thoroughly characterized before and after laccase immobilization with respect to electrokinetic stability, parameters of the porous structure, morphology and type of surface functional groups. Additionally, the immobilization yields were defined, which reached 86% and 94% for ZrO2–SiO2–laccase and ZrO2–SiO2/Cu2+–laccase, respectively. Furthermore, the obtained biocatalytic systems were used for enzymatic decolorization of the Remazol Brilliant Blue R (RBBR) dye from model aqueous solutions, under various reaction conditions (time, temperature, pH). The best conditions of the decolorization process (24 h, 30 °C and pH = 4) allowed to achieve the highest decolorization efficiencies of 98% and 90% for ZrO2–SiO2–laccase and ZrO2–SiO2/Cu2+–laccase, respectively. Finally, it was established that the mortality of Artemia salina in solutions after enzymatic decolorization was lower by approx. 20% and 30% for ZrO2–SiO2–laccase and ZrO2–SiO2/Cu2+–laccase, respectively, as compared to the solution before enzymatic treatment, which indicated lower toxicity of the solution. Thus, it should be clearly stated that doping of the oxide support with copper ions positively affects enzyme stability, activity and, in consequence, the removal efficiency of the RBBR dye.
Collapse
|
28
|
Arunprasath T, Sudalai S, Meenatchi R, Jeyavishnu K, Arumugam A. Biodegradation of triphenylmethane dye malachite green by a newly isolated fungus strain. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Huang J, Yang Y, Wang Y, Zhang M, Liu Y. Immobilization of a Laccase/2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic Acid System to Layered Double Hydroxide/Alginate Biohybrid Beads for Biodegradation of Malachite Green Dye. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5471961. [PMID: 30345302 PMCID: PMC6174817 DOI: 10.1155/2018/5471961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 02/02/2023]
Abstract
The application of laccase-mediator-based catalysis is limited owing to the high cost of laccases and mediators and the potential toxicity of free mediators. Here, a novel biocatalyst (Im-LMS) was fabricated by immobilizing both laccase and a mediator (2,2'-azino-bis-[3-ethylbenzothiazoline]-6-sulfonic acid) on layered double hydroxide/alginate biohybrid beads. The catalytic activity of Im-LMS was evaluated for dye decolorization using malachite green. The decolorization yields of malachite green by Im-LMS and the free laccase-mediator system were 92% within 120 min and 90% within 90 min. Malachite green solution was detoxified completely after biodegradation by Im-LMS. Following eight reuse cycles of Im-LMS for dye treatment, a decolorization yield of 79% was obtained. The activity of Im-LMS was almost completely stable after being stored for 10 days. The recyclability and stability of Im-LMS will be helpful for reducing the running cost and potential toxicity associated with mediators to facilitate practical applications.
Collapse
Affiliation(s)
- Juan Huang
- School of Life Sciences and Technology, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| | - Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| | - Yaokun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| | - Mingyang Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
- Key Laboratory of molecular medicine of Xinxiang, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| |
Collapse
|