1
|
Limjanthong N, Sugiura S, Oda T, Takusari F, Fujiwara Y, Miyazaki T, Naganuma K, Ohnuma K. Monitoring and optimization of the microenvironment in a gravity-driven microfluidic system placed on a slow-tilting table. J Biosci Bioeng 2025:S1389-1723(24)00367-0. [PMID: 39843315 DOI: 10.1016/j.jbiosc.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Gravity-driven microfluidic chips offer portability and flexibility in different settings because pumps and connecting tubes are unnecessary for driving fluid flow. In a previous study, human induced pluripotent stem cells were cultured using gravity-driven microfluidics, with the liquid flow rate regulated by a tilting table. However, instability in cell culture has been observed, occasionally leading to cell death owing to unknown causes. This study measured the ability of a gravity-driven microfluidic system to maintain essential microenvironments, specifically the flow rate, CO2 levels, temperature, and humidity. The incubation procedure was improved to stabilize the parameters at target values. Improvements in the incubation process reduced the time required to reach the stabilized value for CO2, temperature, and humidity by 85, 67, and 5 %, respectively, compared to previous methods. The system demonstrated a precise flow rate, confirmed by a consistent increase in the downstream tank's medium volume after 4 h of perfusion. In addition, the adjustment of the tilting table maintained a steady angle and effectively regulated the flow rate, with the measured flow rate consistent with the theoretical value. The gravity-driven microfluidic system effectively facilitated the culture and differentiation of human iPSCs into the mesodermal lineage after bone morphogenetic protein 4 induction, as indicated by positive SSEA1 immunostaining, demonstrating its potential for stem cell research. Gravity-driven microfluidic systems satisfy these requirements and are suitable for stem cell culture experiments.
Collapse
Affiliation(s)
- Nuttakrit Limjanthong
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan.
| | - Shinji Sugiura
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan.
| | - Taira Oda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan.
| | - Fuko Takusari
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan.
| | - Yasunori Fujiwara
- Division of Mechanical and Intelligent Systems Engineering, National Institute of Technology, Ichinoseki College, Aza-Takanashi, Hagisho, Ichinoseki, Iwate 021-8511, Japan.
| | - Toshimasa Miyazaki
- Department of Electrical Electronics and Information Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan.
| | - Kosei Naganuma
- Environment and Process Design Laboratory, Extreme Energy-Density Research Institute, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan.
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka-machi, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, Niigata, 940-2188 Japan.
| |
Collapse
|
2
|
Gravity-driven microfluidic device placed on a slow-tilting table enables constant unidirectional perfusion culture of human induced pluripotent stem cells. J Biosci Bioeng 2023; 135:151-159. [PMID: 36586792 DOI: 10.1016/j.jbiosc.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/30/2022]
Abstract
Gravity-driven microfluidics, which utilizes gravity force to drive liquid flow, offers portability and multi-condition setting flexibility because they do not require pumps or connection tubes to drive the flow. However, because the flow rate decreases with time in gravity-driven microfluidics, it is not suitable for stem cell experiments, which require long-term (at least a day) stability. In this study, gravity-driven microfluidics and a slow-tilting table were developed to culture cells under constant unidirectional perfusion. The microfluidic device was placed on a slow-tilting table, which tilts unidirectionally at a rate of approximately 7° per day to compensate for the reduction in the flow rate. Computational simulations showed that the pulsation of the flow arising from the stepwise movement of the table was less than 0.2%, and the flow was laminar. Hydrophilization of the tanks increased the flow rate, which is consistent with the theoretical values. We showed that vitronectin is better than laminin 511 fragments as a coating material for adhering human induced pluripotent stem cells on a microchamber made of polydimethylsiloxane, and succeeded in culturing the cells for 3 days. It is believed that the system offers easy-to-use cell culture tools, such as conventional multiwell culture vessels, and enables the control of the cell microenvironment.
Collapse
|
3
|
Nakatani E, Okajima R, Ohnuma K. Slow diffusion on the monolayer culture enhances auto/paracrine effects of Noggin in differentiation of human iPS cells induced by BMP. Biochem Biophys Rep 2022; 29:101195. [PMID: 35005256 PMCID: PMC8717143 DOI: 10.1016/j.bbrep.2021.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Auto/paracrine factors secreted from cells affect differentiation of human pluripotent stem cells (hPSCs). However, the molecular mechanisms underlying the role of secreted factors are not well known. We previously showed that pattern formation in hPSCs induced by BMP4 could be reproduced by a simple reaction-diffusion of BMP and Noggin, a cell-secreted BMP4 inhibitor. However, the amount of Noggin secreted is unknown. In this study, we measured the concentration of Noggin secreted during the differentiation of hPSCs induced by BMP4. The Noggin concentration in the supernatant before and after differentiation was constant at approximately 0.69 ng/mL, which is approximately 50–200 times less than expected in the model. To explain the difference between the experiment and model, we assumed that macromolecules such as heparan sulfate proteoglycan on the cell surface act as a diffusion barrier structure, where the diffusion slows down to 1/400. The model with the diffusion barrier structure reduced the Noggin concentration required to suppress differentiation in the static culture model. The model also qualitatively reproduced the pattern formation, in which only the upstream but not the downstream hPSCs were differentiated in a one-directional perfusion culture chamber, with a small change in the amount of secreted Noggin resulting in a large change in the differentiation position. These results suggest that the diffusion barrier on the cell surface might enhance the auto/paracrine effects on monolayer hPSC culture. Noggin was constantly secreted at about 0.69 ng/mL irrespective of cell state. Noggin concentration was 1/145 than expected in the mere diffusion-reaction model. Slow diffusion on the cell surface reduced the Noggin concentration in the medium. The diffusion barrier reproduced pattern formation in the microchamber.
Collapse
Affiliation(s)
- Eri Nakatani
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| | - Riho Okajima
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| | - Kiyoshi Ohnuma
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan.,Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka, 940-2188, Japan
| |
Collapse
|
4
|
Nakatani E, Yamazaki W, Sugiura S, Kanamori T, Ohnuma K. Modeling of differentiation pattern formation in human induced pluripotent stem cells mediated by BMP4 and its inhibitor noggin secreted from cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Häfner SJ. Tumour travel tours - Why circulating cancer cells value company. Biomed J 2020; 43:1-7. [PMID: 32200951 PMCID: PMC7090313 DOI: 10.1016/j.bj.2020.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Welcome to the New Year and a new issue of the Biomedical Journal, where we learn that travelling with company boosts the metastatic potential of circulating tumour cells, as well as that a worm could be an excellent model to study antidiabetic drugs. In addition, we discover another pair of molecular scissors for genetic engineering, how exactly Leptospira wreaks havoc on its run through the host organism, and that hyperparathyroidism brings its own risks, but does not worsen the outcome of papillary thyroid carcinoma. Furthermore, the importance of taking into account differing beauty ideals for aesthetic surgery surveys is discussed, alongside the question how bad isolated local recurrence is in the case of HR + breast cancer. Finally, we find out that virtual colonoscopy deserves more credit, that the first medical experiment in space was all about the H-reflex, and that it is possible to survive advanced necrotising fasciitis of the face and neck.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Copenhagen, Denmark.
| |
Collapse
|
6
|
Shahbazi M, Cundiff P, Zhou W, Lee P, Patel A, D'Souza SL, Abbasi F, Quertermous T, Knowles JW. The role of insulin as a key regulator of seeding, proliferation, and mRNA transcription of human pluripotent stem cells. Stem Cell Res Ther 2019; 10:228. [PMID: 31358052 PMCID: PMC6664730 DOI: 10.1186/s13287-019-1319-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/06/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022] Open
Abstract
Background Human-induced pluripotent stem cells (hiPSCs) show a great promise as a renewable source of cells with broad biomedical applications. Since insulin has been used in the maintenance of hiPSCs, in this study we explored the role of insulin in culture of these cells. Methods We report conditions for insulin starvation and stimulation of hiPSCs. Crystal violet staining was used to study the adhesion and proliferation of hiPSCs. Apoptosis and cell cycle assays were performed through flow cytometry. Protein arrays were used to confirm phosphorylation targets, and mRNA sequencing was used to evaluate the effect of transcriptome. Results Insulin improved the seeding and proliferation of hiPSCs. We also observed an altered cell cycle profile and increase in apoptosis in hiPSCs in the absence of insulin. Furthermore, we confirmed phosphorylation of key components of insulin signaling pathway in the presence of insulin and demonstrated the significant effect of insulin on regulation of the mRNA transcriptome of hiPSCs. Conclusion Insulin is a major regulator of seeding, proliferation, phosphorylation and mRNA transcriptome in hiPSCs. Collectively, our work furthers our understanding of human pluripotency and paves the way for future studies that use hiPSCs for modeling genetic ailments affecting insulin signaling pathways. Electronic supplementary material The online version of this article (10.1186/s13287-019-1319-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammad Shahbazi
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Paige Cundiff
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY, 10029, USA
| | - Wenyu Zhou
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, CA, 94305, USA.,Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA.,Genetics Bioinformatics Service Center, Stanford University, Stanford, CA, 94305, USA
| | - Philip Lee
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Achchhe Patel
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY, 10029, USA
| | - Sunita L D'Souza
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, NY, 10029, USA
| | - Fahim Abbasi
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Thomas Quertermous
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Joshua W Knowles
- Stanford Cardiovascular Medicine and Cardiovascular Institute, Stanford School of Medicine, Stanford University, Falk CVRC, Room CV273, MC 5406 300 Pasteur Drive, Stanford, CA, 94305, USA. .,Stanford Diabetes Research Center, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|