1
|
Hisada T, Imai Y, Takemoto Y, Kanie K, Kato R. Prediction of antibody production performance change in Chinese hamster ovary cells using morphological profiling. J Biosci Bioeng 2024; 137:453-462. [PMID: 38472072 DOI: 10.1016/j.jbiosc.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 03/14/2024]
Abstract
Monoclonal antibodies (mAbs) represent a significant segment of biopharmaceuticals, with the market for mAb therapeutics expected to reach $200 billion in 2021. Chinese Hamster Ovary (CHO) cells are the industry standard for large-scale mAb production owing to their adaptability and genetic engineering capabilities. However, maintaining consistent product quality is challenging, primarily because of the inherent genetic instability of CHO cells. In this study, we address the need for advanced technologies for quality monitoring of host cells in biopharmaceuticals. We highlight the limitations of traditional cell assessment techniques such as flow cytometry and propose a noninvasive, label-free image-based analysis method. By utilizing advanced image processing and machine learning, this technique aims to non-invasively and quantitatively evaluate subtle quality changes in suspension cells. The research aims to investigate the use of morphological analysis for identifying subtle alterations in mAb productivity of CHO cells, employing cells stimulated by compounds as a model for this study. Our results show that the mAb productivity of CHO cells (day 8) can be predicted only from their early morphological profile (day 3). Our study also discusses the importance of strategic methods for forecasting host cell mAb productivity using morphological profiles, as inferred from our machine learning models specialized in predictive score prediction and anomaly prediction.
Collapse
Affiliation(s)
- Takumi Hisada
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuto Takemoto
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Kei Kanie
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, 1 Umanobe, Takaya, Higashi-Hiroshima 739-2116, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Institute of Nano-Life-Systems, Institute for Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Furocho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
2
|
On-Chip Multiple Particle Velocity and Size Measurement Using Single-Shot Two-Wavelength Differential Image Analysis. MICROMACHINES 2020; 11:mi11111011. [PMID: 33212970 PMCID: PMC7698501 DOI: 10.3390/mi11111011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
Precise and quick measurement of samples' flow velocities is essential for cell sorting timing control and reconstruction of acquired image-analyzed data. We developed a simple technique for the single-shot measurement of flow velocities of particles simultaneously in a microfluidic pathway. The speed was calculated from the difference in the particles' elongation in an acquired image that appeared when two wavelengths of light with different irradiation times were applied. We ran microparticles through an imaging flow cytometer and irradiated two wavelengths of light with different irradiation times simultaneously to those particles. The mixture of the two wavelength transmitted lights was divided into two wavelengths, and the images of the same microparticles for each wavelength were acquired in a single shot. We estimated the velocity from the difference of its elongation divided by the difference of irradiation time by comparing these two images. The distribution of polystyrene beads' velocity was parabolic and highest at the center of the flow channel, consistent with the expected velocity distribution of the laminar flow. Applying the calculated velocity, we also restored the accurate shapes and cross-sectional areas of particles in the images, indicating this simple method for improving of imaging flow cytometry and cell sorter for diagnostic screening of circulating tumor cells.
Collapse
|
3
|
Predicting quality decay in continuously passaged mesenchymal stem cells by detecting morphological anomalies. J Biosci Bioeng 2020; 131:198-206. [PMID: 33121889 DOI: 10.1016/j.jbiosc.2020.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/21/2023]
Abstract
With rapid advances in cell therapy, technologies enabling both consistency and efficiency in cell manufacturing are becoming necessary. Morphological monitoring allows practical quality maintenance in cell manufacturing facilities, but relies heavily on human skill. For more reproducible and data-driven quality evaluation, image-based morphological analysis provides multiple advantages over manual observation. Our group has investigated the performance of multiple morphological parameters obtained from time-course images to non-invasively and quantitatively predict cellular quality using machine learning algorithms. Although such morphology-based computational models succeeded in early cell quality predictions, it was difficult to introduce our approach in cell manufacturing facilities owing to data variation issues. Since manufacturing facilities have fixed their protocol to minimize anomalies as much as possible, most accumulated data are normal, and anomalies are scarce. Thus, our morphological analysis had to adapt to such practical situation where it was difficult to observe a wide range of data variations, including both normal samples and anomalies, which is typically essential to improve most machine learning models' performance. In the present study, we introduce a practical morphological analysis concept by investigating the performance of anomalous quality decay discrimination during the continuous passaging of human mesenchymal stem cells (hMSCs). Combining the visualization method and asymmetric statistic discrimination, we describe an effective morphology-based, in-process quality monitoring concept to detect quality anomalies throughout cell culture process. Our results showed that the use of morphological parameters to reflect cellular population heterogeneity can predict hMSC quality decay within 6 h after seeding.
Collapse
|
4
|
Fabrication of Hollow Structures in Photodegradable Hydrogels Using a Multi-Photon Excitation Process for Blood Vessel Tissue Engineering. MICROMACHINES 2020; 11:mi11070679. [PMID: 32668567 PMCID: PMC7408076 DOI: 10.3390/mi11070679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 01/06/2023]
Abstract
Engineered blood vessels generally recapitulate vascular function in vitro and can be utilized in drug discovery as a novel microphysiological system. Recently, various methods to fabricate vascular models in hydrogels have been reported to study the blood vessel functions in vitro; however, in general, it is difficult to fabricate hollow structures with a designed size and structure with a tens of micrometers scale for blood vessel tissue engineering. This study reports a method to fabricate the hollow structures in photodegradable hydrogels prepared in a microfluidic device. An infrared femtosecond pulsed laser, employed to induce photodegradation via multi-photon excitation, was scanned in the hydrogel in a program-controlled manner for fabricating the designed hollow structures. The photodegradable hydrogel was prepared by a crosslinking reaction between an azide-modified gelatin solution and a dibenzocyclooctyl-terminated photocleavable tetra-arm polyethylene glycol crosslinker solution. After assessing the composition of the photodegradable hydrogel in terms of swelling and cell adhesion, the hydrogel prepared in the microfluidic device was processed by laser scanning to fabricate linear and branched hollow structures present in it. We introduced a microsphere suspension into the fabricated structure in photodegradable hydrogels, and confirmed the fabrication of perfusable hollow structures of designed patterns via the multi-photon excitation process.
Collapse
|
5
|
Shirai K, Kato H, Imai Y, Shibuta M, Kanie K, Kato R. The importance of scoring recognition fitness in spheroid morphological analysis for robust label-free quality evaluation. Regen Ther 2020; 14:205-214. [PMID: 32435672 PMCID: PMC7229423 DOI: 10.1016/j.reth.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
Because of the growing demand for human cell spheroids as functional cellular components for both drug development and regenerative therapy, the technology to non-invasively evaluate their quality has emerged. Image-based morphology analysis of spheroids enables high-throughput screening of their quality. However, since spheroids are three-dimensional, their images can have poor contrast in their surface area, and therefore the total spheroid recognition by image processing is greatly dependent on human who design the filter-set to fit for their own definition of spheroid outline. As a result, the reproducibility of morphology measurement is critically affected by the performance of filter-set, and its fluctuation can disrupt the subsequent morphology-based analysis. Although the unexpected failure derived from the inconsistency of image processing result is a critical issue for analyzing large image data for quality screening, it has been tackled rarely. To achieve robust analysis performances using morphological features, we investigated the influence of filter-set's reproducibility for various types of spheroid data. We propose a new scoring index, the "recognition fitness deviation (RFD)," as a measure to quantitatively and comprehensively evaluate how reproductively a designed filter-set can work with data variations, such as the variations in replicate samples, in time-course samples, and in different types of cells (a total of six normal or cancer cell types). Our result shows that RFD scoring from 5000 images can automatically rank the best robust filter-set for obtaining the best 6-cell type classification model (94% accuracy). Moreover, the RFD score reflected the differences between the worst and the best classification models for morphologically similar spheroids, 60% and 89% accuracy respectively. In addition to RFD scoring, we found that using the time-course of morphological features can augment the fluctuations in spheroid recognitions leading to robust morphological analysis.
Collapse
Affiliation(s)
- Kazuhide Shirai
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
- Mathematical Sciences Research Laboratory, Research & Development Division, Nikon Corporation, Yokohama Plant, 471, Nagaodai-cho, Sakae-ku, Yokohama-city, Kanagawa 244-8533, Japan
| | - Hirohito Kato
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuta Imai
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Mayu Shibuta
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kei Kanie
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryuji Kato
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute of Nano-Life-Systems, Institute for Innovation for Future Society, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Chiu JCY, Teodoro JA, Lee JH, Matthews K, Duffy SP, Ma H. Selective cell propagation via micropatterning of a thermally-activated hydrogel. LAB ON A CHIP 2020; 20:1544-1553. [PMID: 32270803 DOI: 10.1039/c9lc01230c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to selectively propagate specific cells is fundamentally important to the development of clonal cell populations. Current methods rely on techniques such as limiting dilution, colony picking, and flow cytometry to transfer single cells into single wells, resulting in workflows that are low-throughput, slowed by propagation kinetics, and susceptible to contamination. Here, we developed a method, called selective laser gelation (SLG), to micropattern hydrogels in cell culture media in order to encapsulate specific cells to selectively arrest their growth. This process relies on the inverse gelation of methylcellulose, which forms a hydrogel when heated rather than cooled. Local heating using an infrared laser enables hydrogel micropatterning, while phase transition hysteresis retains the hydrogel after laser excitation. As a demonstration, we used this approach to selectively propagate transgenic CHO cells with increased antibody productivity. More generally, hydrogel micropatterning provides a simple and non-contact method for selective propagation of cells based on features identified by imaging.
Collapse
Affiliation(s)
- Jeffrey C Y Chiu
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|