1
|
Colucci Cante R, Nigro F, Passannanti F, Lentini G, Gallo M, Nigro R, Budelli AL. Gut health benefits and associated systemic effects provided by functional components from the fermentation of natural matrices. Compr Rev Food Sci Food Saf 2024; 23:e13356. [PMID: 38767859 DOI: 10.1111/1541-4337.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/26/2024] [Accepted: 04/06/2024] [Indexed: 05/22/2024]
Abstract
Recently, the role of the gut microbiota in metabolic health, immunity, behavioral balance, longevity, and intestine comfort has been the object of several studies from scientific communities. They were encouraged by a growing interest from food industries and consumers toward novel fermented ingredients and formulations with powerful biological effects, such as pre, pro, and postbiotic products. Depending on the selected strains, the operating conditions, the addition of suitable reagents or enzymes, the equipment, and the reactor configurations, functional compounds with high bioactivity, such as short-chain fatty acids, gamma-aminobutyric acid, bioactive peptides, and serotonin, can be enhanced and/or produced through fermentation of several vegetable matrices. Otherwise, their formation can also be promoted directly in the gut after the dietary intake of fermented foods: In this case, fermentation will aim to increase the content of precursor substances, such as indigestible fibers, polyphenols, some amino acids, and resistant starch, which can be potentially metabolized by endogenous gut microorganisms and converted in healthy molecules. This review provides an overview of the main functional components currently investigated in literature and the associated gut health benefits. The current state of the art about fermentation technology as a promising functionalization tool to promote the direct or indirect formation of gut-health-enhancing components was deepened, highlighting the importance of optimizing microorganism selection, system setups, and process conditions according to the target compound of interest. The collected data suggested the possibility of gaining novel functional food ingredients or products rich in functional molecules through fermentation without performing additional extraction and purification stages, which are needed when conventional culture broths are used.
Collapse
Affiliation(s)
- Rosa Colucci Cante
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
| | - Federica Nigro
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Francesca Passannanti
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Giulia Lentini
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | - Marianna Gallo
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
- Department of Industrial Engineering, University of Niccolò Cusano, Rome, Italy
- I. T. P. Innovation and Technology Provider S.r.l., Naples, Italy
| | - Roberto Nigro
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
2
|
Hazare C, Bhagwat P, Singh S, Pillai S. Diverse origins of fibrinolytic enzymes: A comprehensive review. Heliyon 2024; 10:e26668. [PMID: 38434287 PMCID: PMC10907686 DOI: 10.1016/j.heliyon.2024.e26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Fibrinolytic enzymes cleave fibrin which plays a crucial role in thrombus formation which otherwise leads to cardiovascular diseases. While different fibrinolytic enzymes have been purified, only a few have been utilized as clinical and therapeutic agents; hence, the search continues for a fibrinolytic enzyme with high specificity, fewer side effects, and one that can be mass-produced at a lower cost with a higher yield. In this context, this review discusses the physiological mechanism of thrombus formation and fibrinolysis, and current thrombolytic drugs in use. Additionally, an overview of the optimization, production, and purification of fibrinolytic enzymes and the role of Artificial Intelligence (AI) in optimization and the patents granted is provided. This review classifies microbial as well as non-microbial fibrinolytic enzymes isolated from food sources, including fermented foods and non-food sources, highlighting their advantages and disadvantages. Despite holding immense potential for the discovery of novel fibrinolytic enzymes, only a few fermented food sources limited to Asian countries have been studied, necessitating the research on fibrinolytic enzymes from fermented foods of other regions. This review will aid researchers in selecting optimal sources for screening fibrinolytic enzymes and is the first one to provide insights and draw a link between the implication of source selection and in vivo application.
Collapse
Affiliation(s)
- Chinmay Hazare
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Suren Singh
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, University of Technology, P.O. Box 1334, Durban, 4000, South AfricaDurban
| |
Collapse
|
3
|
Kasamatsu S, Kinno A, Miura C, Hishiyama JI, Fukui K, Kure S, Tsumura K, Ida T, Matsunaga T, Akaike T, Ihara H. Quantitative profiling of supersulfides naturally occurring in dietary meats and beans. Anal Biochem 2024; 685:115392. [PMID: 37967784 DOI: 10.1016/j.ab.2023.115392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Sulfur is essential in the inception of life and crucial for maintaining human health. This mineral is primarily supplied through the intake of proteins and is used for synthesizing various sulfur-containing biomolecules. Recent research has highlighted the biological significance of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiol and proteins. Ingestion of exogenous sulfur compounds is essential for endogenous supersulfide production. However, the content and composition of supersulfides in foods remain unclear. This study investigated the supersulfide profiles of protein-rich foods, including edible animal meat and beans. Quantification of the supersulfide content revealed that natto, chicken liver, and bean sprouts contained abundant supersulfides. In general, the supersulfide content in beans and their derivatives was higher than that in animal meat. The highest proportion (2.15 %) was detected in natto, a traditional Japanese fermented soybean dish. These results suggest that the abundance of supersulfides, especially in foods like natto and bean sprouts, may contribute to their health-promoting properties. Our findings may have significant biological implications and warrant developing novel dietary intervention for the human health-promoting effects of dietary supersulfides abundantly present in protein-rich foods such as natto and bean sprouts.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Ayaka Kinno
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Chiharu Miura
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Jun-Ichi Hishiyama
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kensuke Fukui
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., Japan
| | - Shoji Kure
- Soy Ingredients R&D Department, Fuji Oil Co., Ltd., Izumisano, 598-8540, Japan
| | - Kazunobu Tsumura
- Research Institute for Creating the Future, Fuji Oil Holdings Inc., Japan
| | - Tomoaki Ida
- Organization for Research Promotion, Osaka Metropolitan University, Sakai, 599-8531, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan.
| | - Hideshi Ihara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan; Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
4
|
Bankole AO, Irondi EA, Awoyale W, Ajani EO. Application of natural and modified additives in yogurt formulation: types, production, and rheological and nutraceutical benefits. Front Nutr 2023; 10:1257439. [PMID: 38024362 PMCID: PMC10646222 DOI: 10.3389/fnut.2023.1257439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Yogurt, a popular fermented dairy product, is of different types and known for its nutritional and nutraceutical benefits. However, incorporating additives into yogurt has been adopted to improve its functionality and nutraceutical properties. Additives incorporated in yogurt may be natural or modified. The incorporation of diverse natural additives in yogurt formulation, such as moringa, date palm, grape seeds and argel leaf extracts, cornelian cherry paste, mulberry fruit and leaf powder, lentil flour, different types of fibers, lemongrass and spearmint essential oils, and honey, has been reported. Similarly, modified additives, such as β-glucan, pectin, inulin, sodium alginate, and gelatin, are also added to enhance the physicochemical, textural, sensory, and rheological properties of yogurt. Although additives are traditionally added for their technological impact on the yogurt, studies have shown that they influence the nutritional and nutraceutical properties of yogurt, when added. Hence, yogurts enriched with functional additives, especially natural additives, have been reported to possess an improved nutritional quality and impart several health benefits to consumers. These benefits include reducing the risk of cardiovascular disease, cancer, osteoporosis, oxidative stress, and hyperglycemia. This current review highlights the common types of yogurt, the production process, and the rheological and nutraceutical benefits of incorporating natural and modified additives into yogurt.
Collapse
Affiliation(s)
| | | | - Wasiu Awoyale
- Department of Food Science and Technology, Kwara State University, Ilorin, Nigeria
| | | |
Collapse
|
5
|
Wang C, Chen J, Tian W, Han Y, Xu X, Ren T, Tian C, Chen C. Natto: A medicinal and edible food with health function. CHINESE HERBAL MEDICINES 2023; 15:349-359. [PMID: 37538862 PMCID: PMC10394349 DOI: 10.1016/j.chmed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 08/05/2023] Open
Abstract
Natto is a soybean product fermented by natto bacteria. It is rich in a variety of amino acids, vitamins, proteins and active enzymes. It has a number of biological activities, such as thrombolysis, prevention of osteoporosis, antibacterial, anticancer, antioxidant and so on. It is widely used in medicine, health-care food, biocatalysis and other fields. Natto is rich in many pharmacological active substances and has significant medicinal research value. This paper summarizes the pharmacological activities and applications of natto in and outside China, so as to provide references for further research and development of natto.
Collapse
Affiliation(s)
- Chunfang Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Jinpeng Chen
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Wenguo Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Yanqi Han
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Xu Xu
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Tao Ren
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Chengwang Tian
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| | - Changqing Chen
- Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
- Tianjin Key Laboratory of Quality Marker of Traditional Medicine, Tianjin 300462, China
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300462, China
| |
Collapse
|
6
|
Knez E, Kadac-Czapska K, Grembecka M. Fermented Vegetables and Legumes vs. Lifestyle Diseases: Microbiota and More. Life (Basel) 2023; 13:life13041044. [PMID: 37109573 PMCID: PMC10141223 DOI: 10.3390/life13041044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Silages may be preventive against lifestyle diseases, including obesity, diabetes mellitus, or metabolic syndrome. Fermented vegetables and legumes are characterized by pleiotropic health effects, such as probiotic or antioxidant potential. That is mainly due to the fermentation process. Despite the low viability of microorganisms in the gastrointestinal tract, their probiotic potential was confirmed. The modification of microbiota diversity caused by these food products has numerous implications. Most of them are connected to changes in the production of metabolites by bacteria, such as butyrate. Moreover, intake of fermented vegetables and legumes influences epigenetic changes, which lead to inhibition of lipogenesis and decreased appetite. Lifestyle diseases' feature is increased inflammation; thus, foods with high antioxidant potential are recommended. Silages are characterized by having a higher bioavailable antioxidants content than fresh samples. That is due to fermentative microorganisms that produce the enzyme β-glucosidase, which releases these compounds from conjugated bonds with antinutrients. However, fermented vegetables and legumes are rich in salt or salt substitutes, such as potassium chloride. However, until today, silages intake has not been connected to the prevalence of hypertension or kidney failure.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Kornelia Kadac-Czapska
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| |
Collapse
|
7
|
Chioma Mgbodile F, Nwagu TNT. Probiotic therapy, African fermented foods and food-derived bioactive peptides in the management of SARS-CoV-2 cases and other viral infections. BIOTECHNOLOGY REPORTS 2023; 38:e00795. [PMID: 37041970 PMCID: PMC10066861 DOI: 10.1016/j.btre.2023.e00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023]
Abstract
The current paper focuses on the impact of probiotics, African fermented foods and bioactive peptides on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection severity and related viral infections. Using probiotics or bioactive peptides as therapeutic adjuncts appears superior to standard care alone. Probiotics play critical roles in innate and adaptive immune modulation by balancing the gut microbiota to combat viral infections, secondary bacterial infections and microbial dysbiosis. African fermented foods contain abundant potential probiotic microorganisms such as the lactic acid bacteria (LAB), Saccharomyces, and Bacillus. More so, fermented food-derived bioactive peptides play vital roles in preventing cardiovascular diseases, hypertension, lung injury, diabetes, and other COVID-19 comorbidities. Regularly incorporating potential probiotics and bioactive peptides into diets should enable a build-up of the benefits in the body system that may result in a better prognosis, especially in COVID-19 patients with underlying complexities. Despite the reported therapeutic potentials of probiotics and fermented foods, numerous setbacks exist regarding their application in disease management. These shortfalls underscore an evident need for more studies to evaluate the specific potentials of probiotics and traditional fermented foods in ameliorating SARS-CoV-2 and other viral infections.
Collapse
|
8
|
Bioactive peptides derived from fermented foods: Preparation and biological activities. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Singh A, Duche RT, Wandhare AG, Sian JK, Singh BP, Sihag MK, Singh KS, Sangwan V, Talan S, Panwar H. Milk-Derived Antimicrobial Peptides: Overview, Applications, and Future Perspectives. Probiotics Antimicrob Proteins 2023; 15:44-62. [PMID: 36357656 PMCID: PMC9649404 DOI: 10.1007/s12602-022-10004-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The growing consumer awareness towards healthy and safe food has reformed food processing strategies. Nowadays, food processors are aiming at natural, effective, safe, and low-cost substitutes for enhancing the shelf life of food products. Milk, besides being a rich source of nutrition for infants and adults, serves as a readily available source of precious functional peptides. Due to the existence of high genetic variability in milk proteins, there is a great possibility to get bioactive peptides with varied properties. Among other bioactive agents, milk-originated antimicrobial peptides (AMPs) are gaining interest as attractive and safe additive conferring extended shelf life to minimally processed foods. These peptides display broad-spectrum antagonistic activity against bacteria, fungi, viruses, and protozoans. Microbial proteolytic activity, extracellular peptidases, food-grade enzymes, and recombinant DNA technology application are among few strategies to tailor specific peptides from milk and enhance their production. These bioprotective agents have a promising future in addressing the global concern of food safety along with the possibility to be incorporated into the food matrix without compromising overall consumer acceptance. Additionally, in conformity to the current consumer demands, these AMPs also possess functional properties needed for value addition. This review attempts to present the basic properties, synthesis approaches, action mechanism, current status, and prospects of antimicrobial peptide application in food, dairy, and pharma industry along with their role in ensuring the safety and health of consumers.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Rachael Terumbur Duche
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Federal University of Agriculture, Makurdi, Nigeria
| | - Arundhati Ganesh Wandhare
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Jaspreet Kaur Sian
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Punjab Agricultural University (PAU), Ludhiana, 141001 Punjab India
| | - Brij Pal Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, 123031 Haryana India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Kumar Siddharth Singh
- Institute for Microbiology, Gottfried Wilhelm Leibniz University, Herrenhäuser Str. 2, 30419 Hanover, Germany
| | - Vikas Sangwan
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Shreya Talan
- Dairy Microbiology Division, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001, Punjab, India.
| |
Collapse
|
10
|
Romero-Luna HE, Hernández-Mendoza A, González-Córdova AF, Peredo-Lovillo A. Bioactive peptides produced by engineered probiotics and other food-grade bacteria: A review. Food Chem X 2022; 13:100196. [PMID: 35498967 PMCID: PMC9039921 DOI: 10.1016/j.fochx.2021.100196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Synthetic biology improves probiotics therapeutic approaches. Engineering technologies contribute to design probiotics mechanisms of action. Edition of proteolytic systems induce the generation of specific bioactive peptides. Engineered probiotics should be evaluated as therapeutic agents in clinical trials. Therapeutical and technological uses of engineered probiotics are still controversial.
Synthetic biology is employed for the study and design of engineered microbes with new and improved therapeutic functions. The main advantage of synthetic biology is the selective genetic manipulation of living organisms with desirable beneficial effects such as probiotics. Engineering technologies have contributed to the edition of metabolic processes involved in the mechanisms of action of probiotics, such as the generation of bioactive peptides. Hence, current information related to bioactive peptides, produced by different engineering probiotics, with antimicrobial, antiviral, antidiabetic, and antihypertensive activities, as well as their potential use as functional ingredients, is discussed here. Besides, the effectiveness and safety aspects of these bioactive peptides were also described.
Collapse
Affiliation(s)
- Haydee Eliza Romero-Luna
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Xalapa 91096, Veracruz, Mexico
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico
| | - Aarón Fernando González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, Sonora, Mexico
| | - Audry Peredo-Lovillo
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior de Xalapa, Xalapa 91096, Veracruz, Mexico
| |
Collapse
|
11
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
12
|
Nasri R, Abdelhedi O, Nasri M, Jridi M. Fermented protein hydrolysates: biological activities and applications. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Li T, Zhang X, Ren Y, Zeng Y, Huang Q, Wang C. Antihypertensive effect of soybean bioactive peptides: A review. Curr Opin Pharmacol 2022; 62:74-81. [PMID: 34929528 DOI: 10.1016/j.coph.2021.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023]
Abstract
Hypertension is a global disease that is extremely harmful to humans. Timely lowering of blood pressure is necessary in order to avoid the occurrence of corresponding complications. This review shows that soy peptides are beneficial in resisting hypertension. One of the advantages is the abundance of raw materials for producing soybean peptides. Secondly, there are no reports of adverse reactions due to soy peptides. Moreover, they exert protective effect against hypertension-induced complications such as long-term memory impairment and kidney damage. However, there are still some obstacles associated with the development of soybean peptides. Therefore, this review is focused on statistical analysis of peptide sequences, amino acid residues, and possible targets of anti-hypertensive soybean peptides. Eventually, it proposes that application of genetic engineering technology to specifically modify the N- and C-terminal of the soybean peptides, and possible targets in identifying the likely drug targets involved in the antihypertensive effects of these peptides.
Collapse
Affiliation(s)
- Tingna Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Xiaorui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Yuanyuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Yijia Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, China
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, China.
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, China.
| |
Collapse
|
14
|
Cui X, Ng KR, Chai KF, Chen WN. Clinically relevant materials & applications inspired by food technologies. EBioMedicine 2022; 75:103792. [PMID: 34974308 PMCID: PMC8728048 DOI: 10.1016/j.ebiom.2021.103792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Food science and technology have a fundamental and considerable overlap with medicine, and many clinically important applications were borne out of translational food science research. Globally, the food industry - through various food processing technologies - generates huge quantities of agro-waste and food processing byproducts that retain a significant biochemical potential for upcycling into important medical applications. This review explores some distinct clinical applications that are fabricable from food-based biopolymers and substances, often originating from food manufacturing side streams. These include antibacterial wound dressings and tissue scaffolding from the biopolymers cellulose and chitosan and antimicrobial food phytochemicals for combating antibiotic-resistant nosocomial infections. Furthermore, fermentation is discussed as the epitome of a translational food technology that unlocks further therapeutic value from recalcitrant food-based substrates and enables sustainable large-scale production of high-value pharmaceuticals, including novel fermented food-derived bioactive peptides (BPs).
Collapse
Affiliation(s)
- Xi Cui
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, CleanTech One, No. 06-08, 637141, Singapore; Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kuan Rei Ng
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Kong Fei Chai
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Wei Ning Chen
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
15
|
Chai KF, Voo AYH, Chen WN. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr Rev Food Sci Food Saf 2020; 19:3825-3885. [PMID: 33337042 DOI: 10.1111/1541-4337.12651] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Bioactive peptides (BPs) are specific protein fragments that exert various beneficial effects on human bodies and ultimately influence health, depending on their structural properties and amino acid composition and sequences. By offering promising solutions to solve diverse health issues, the production, characterization, and applications of food-derived BPs have drawn great interest in the current literature and are of particular interest to the food and pharmaceutical industries. The microbial fermentation of protein from various sources is indubitably a novel way to produce BPs with numerous beneficial health effects. Apart from its lower cost as compared to enzymes, the BPs produced from microbial fermentation can be purified without further hydrolysis. Despite these features, current literature shows dearth of information on the BPs produced from food via microbial fermentation. Hence, there is a strong necessity to explore the BPs obtained from food fermentation for the development of commercial nutraceuticals and functional foods. As such, this review focuses on the production of BPs from different food sources, including the extensively studied milk and milk products, with emphasis on microbial fermentation. The structure-activity (antihypertensive, antioxidant, antimicrobial, opiate-like, anti-inflammatory, anticancer/antiproliferative, antithrombotic, hypolipidemic, hypocholesterolemic, and mineral binding) relationship, potential applications, future development, and challenges of BPs obtained from food fermentation are also discussed.
Collapse
Affiliation(s)
- Kong Fei Chai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Amanda Ying Hui Voo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
16
|
Taniguchi M, Aida R, Saito K, Kikura T, Ochiai A, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides from enzymatic hydrolysates of soybean proteins. J Biosci Bioeng 2020; 129:59-66. [PMID: 31324383 DOI: 10.1016/j.jbiosc.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
In this study, we used the commercial soybean protein hydrolysate Hinute-DC6 as a novel starting material from which to purify and identify multifunctional cationic peptides. After fractionation, Hinute-DC6 was separated into 20 fractions with varying isoelectric points (pI) by ampholyte-free isoelectric focusing (autofocusing). Subsequently, we purified and identified the cationic peptides from fractions 19 and 20, which had pI values greater than 12, using reversed-phase high-performance liquid chromatography and matrix-assisted laser/desorption ionization-time-of-flight mass spectrometry. Of the 83 cationic peptides identified, 14 had high pI values and net charges greater than +2, and were chemically synthesized and assayed for various bioactivities, including hemolytic, antimicrobial, lipopolysaccharide (LPS)-neutralizing, and angiogenic activities. None of the 14 cationic peptides tested exhibited hemolytic activity toward mammalian red blood cells at concentrations up to 1000 μM. Five of the cationic peptides exhibited antimicrobial activities against at least one of four human-pathogenic microorganisms tested. In addition, in chromogenic LPS-neutralizing assays using Limulus amebocyte lysates, the 50% effective concentrations of these 14 peptides were between 0.069 and 5.2 μM. Tube-formation assays in human umbilical vein endothelial cells showed that each of the 14 cationic peptides exhibited significant angiogenic activities at 10 μM, with values similar to those of the positive control LL-37. Our results demonstrate that the 14 identified cationic peptides have multiple functions with negligible hemolytic activity. These data indicate that the cationic peptides isolated from Hinute-DC6 and fractions containing these cationic peptides have the potential to be used as multifunctional ingredients for healthcare applications.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Ryousuke Aida
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Toyotaka Kikura
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|