1
|
Nagano S, Fumino S, Kishida T, Wakao J, Hirohata Y, Takayama S, Kim K, Akiyoshi K, Mazda O, Tajiri T, Ono S. Development of a skeletal muscle sheet with direct reprogramming-induced myoblasts on a nanogel-cross-linked porous freeze-dried gel scaffold in a mouse gastroschisis model. Pediatr Surg Int 2024; 40:241. [PMID: 39183231 DOI: 10.1007/s00383-024-05811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE In this study, we attempted to create skeletal muscle sheets made of directly converted myoblasts (dMBs) with a nanogel scaffold on a biosheet using a mouse gastroschisis model. METHODS dMBs were prepared by the co-transfection of MYOD1 and MYCL into human fibroblasts. Silicon tubes were implanted under the skin of NOG/SCID mice, and biosheets were formed. The nanogel was a nanoscale hydrogel based on cholesterol-modified pullulan, and a NanoClip-FD gel was prepared by freeze-drying the nanogel. 7 mm in length was created in the abdominal wall of NOG/SCID mice as a mouse gastroschisis model. Matrigel or NanoCliP-FD gel seeded with dMBs was placed on the biosheet and implanted on the model mice. RESULTS Fourteen days after surgery, dMBs with Matrigel showed a small amount of coarse aggregations of muscle-like cells. In contrast, dMBs with NanoCliP-FD gel showed multinucleated muscle-like cells, which were expressed as desmin and myogenin by fluorescent immunostaining. CONCLUSION Nanogels have a porous structure and are useful as scaffolds for tissue regeneration by supplying oxygen and nutrients supply to the cells. Combining dMBs and nanogels on the biosheets resulted in the differentiation and engraftment of skeletal muscle, suggesting the possibility of developing skeletal muscle sheets derived from autologous cells and tissues.
Collapse
Affiliation(s)
- Shinta Nagano
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Shigehisa Fumino
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junko Wakao
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Hirohata
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shohei Takayama
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kiyokazu Kim
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuro Tajiri
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeru Ono
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan
| |
Collapse
|
2
|
Ding R, Xi Y, Ito A, Shimizu K, Nagamori E, Fujita H, Kawamoto T, Horie M. Bone morphogenetic protein signaling inhibitor improves differentiation and function of 3D muscle construct fabricated using C2C12. J Biosci Bioeng 2024; 137:480-486. [PMID: 38604883 DOI: 10.1016/j.jbiosc.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Functional tissue-engineered artificial skeletal muscle tissue has great potential for pharmacological and academic applications. This study demonstrates an in vitro tissue engineering system to construct functional artificial skeletal muscle tissues using self-organization and signal inhibitors. To induce efficient self-organization, we optimized the substrate stiffness and extracellular matrix (ECM) coatings. We modified the tissue morphology to be ring-shaped under optimized self-organization conditions. A bone morphogenetic protein (BMP) inhibitor was added to improve overall myogenic differentiation. This supplementation enhanced the myogenic differentiation ratio and myotube hypertrophy in two-dimensional cell cultures. Finally, we found that myotube hypertrophy was enhanced by a combination of self-organization with ring-shaped tissue and a BMP inhibitor. BMP inhibitor treatment significantly improved myogenic marker expression and contractile force generation in the self-organized tissue. These observations indicated that this procedure may provide a novel and functional artificial skeletal muscle for pharmacological studies.
Collapse
Affiliation(s)
- Ran Ding
- Graduate School of Human and Environmental, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuan Xi
- Graduate School of Human and Environmental, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akira Ito
- Department of Chemical Systems Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Eiji Nagamori
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takuo Kawamoto
- Graduate School of Human and Environmental, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masanobu Horie
- Division of Biochemical Engineering, Radioisotope Research Center, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
3
|
Vesga-Castro C, Aldazabal J, Vallejo-Illarramendi A, Paredes J. Contractile force assessment methods for in vitro skeletal muscle tissues. eLife 2022; 11:e77204. [PMID: 35604384 PMCID: PMC9126583 DOI: 10.7554/elife.77204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Over the last few years, there has been growing interest in measuring the contractile force (CF) of engineered muscle tissues to evaluate their functionality. However, there are still no standards available for selecting the most suitable experimental platform, measuring system, culture protocol, or stimulation patterns. Consequently, the high variability of published data hinders any comparison between different studies. We have identified that cantilever deflection, post deflection, and force transducers are the most commonly used configurations for CF assessment in 2D and 3D models. Additionally, we have discussed the most relevant emerging technologies that would greatly complement CF evaluation with intracellular and localized analysis. This review provides a comprehensive analysis of the most significant advances in CF evaluation and its critical parameters. In order to compare contractile performance across experimental platforms, we have used the specific force (sF, kN/m2), CF normalized to the calculated cross-sectional area (CSA). However, this parameter presents a high variability throughout the different studies, which indicates the need to identify additional parameters and complementary analysis suitable for proper comparison. We propose that future contractility studies in skeletal muscle constructs report detailed information about construct size, contractile area, maturity level, sarcomere length, and, ideally, the tetanus-to-twitch ratio. These studies will hopefully shed light on the relative impact of these variables on muscle force performance of engineered muscle constructs. Prospective advances in muscle tissue engineering, particularly in muscle disease models, will require a joint effort to develop standardized methodologies for assessing CF of engineered muscle tissues.
Collapse
Affiliation(s)
- Camila Vesga-Castro
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Donostia - IIS BiodonostiaSan SebastianSpain
| | - Javier Aldazabal
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Department of Pediatrics, UPV/EHU, Hospital Donostia - IIS BiodonostiaSan SebastianSpain
- CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation, and UniversitiesMadridSpain
| | - Jacobo Paredes
- University of Navarra, Tecnun School of Engineering, Manuel de LardizábalSan SebastianSpain
- University of Navarra, Biomedical Engineering Center, Campus UniversitarioPamplonaSpain
| |
Collapse
|
4
|
Yamamoto K, Ohsumi S, Nagashima T, Akiyama H, Honda H, Shimizu K. Screening of anti-atrophic peptides by using photo-cleavable peptide array and 96-well scale contractile human skeletal muscle atrophy models. Biotechnol Bioeng 2022; 119:2196-2205. [PMID: 35478456 DOI: 10.1002/bit.28125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022]
Abstract
Skeletal muscle atrophy is characterized by decreases in protein content, myofiber diameter, and contractile force generation. As muscle atrophy worsens the quality of life, the development of anti-atrophic substances is desirable. In this study, we aimed to demonstrate a screening process for anti-atrophic peptides using photo-cleavable peptide array technology and human contractile atrophic muscle models. We developed a 96-well system, and established a screening process with less variability. Dexamethasone-induced human atrophic tissue was constructed on the system. Eight peptides were selected from the literature and used for the screening of peptides for preventing the decrease of the contractile forces of tissues. The peptide QIGFIW, which showed preventive activity, was selected as the seed sequence. As a result of amino acid substitution, we obtained QIGFIQ as a peptide with higher anti-atrophic activity. These results indicate that the combinatorial use of the photo-cleavable peptide array technology and 96-well screening system could comprise a powerful approach to obtaining anti-atrophic peptides, and suggest that the 96-well screening system and atrophic model represent a practical and powerful tool for the development of drugs/functional food ingredients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kazuki Yamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Saki Ohsumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Takunori Nagashima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hirokazu Akiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
5
|
Jiang Y, Torun T, Maffioletti SM, Serio A, Tedesco FS. Bioengineering human skeletal muscle models: Recent advances, current challenges and future perspectives. Exp Cell Res 2022; 416:113133. [DOI: 10.1016/j.yexcr.2022.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/30/2021] [Accepted: 03/28/2022] [Indexed: 11/04/2022]
|
6
|
Yamamoto K, Yamaoka N, Imaizumi Y, Nagashima T, Furutani T, Ito T, Okada Y, Honda H, Shimizu K. Development of a human neuromuscular tissue-on-a-chip model on a 24-well-plate-format compartmentalized microfluidic device. LAB ON A CHIP 2021; 21:1897-1907. [PMID: 34008665 DOI: 10.1039/d1lc00048a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineered three-dimensional models of neuromuscular tissues are promising for use in mimicking their disorder states in vitro. Although several models have been developed, it is still challenging to mimic the physically separated structures of motor neurons (MNs) and skeletal muscle (SkM) fibers in the motor units in vivo. In this study, we aimed to develop microdevices for precisely compartmentalized coculturing of MNs and engineered SkM tissues. The developed microdevices, which fit a well of 24 well plates, had a chamber for MNs and chamber for SkM tissues. The two chambers were connected by microtunnels for axons, permissive to axons but not to cell bodies. Human iPSC (hiPSC)-derived MN spheroids in one chamber elongated their axons into microtunnels, which reached the tissue-engineered human SkM in the SkM chamber, and formed functional neuromuscular junctions with the muscle fibers. The cocultured SkM tissues with MNs on the device contracted spontaneously in response to spontaneous firing of MNs. The addition of a neurotransmitter, glutamate, into the MN chamber induced contraction of the cocultured SkM tissues. Selective addition of tetrodotoxin or vecuronium bromide into either chamber induced SkM tissue relaxation, which could be explained by the inhibitory mechanisms. We also demonstrated the application of chemical or mechanical stimuli to the middle of the axons of cocultured tissues on the device. Thus, compartmentalized neuromuscular tissue models fabricated on the device could be used for phenotypic screening to evaluate the cellular type specific efficacy of drug candidates and would be a useful tool in fundamental research and drug development for neuromuscular disorders.
Collapse
Affiliation(s)
- Kazuki Yamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Nao Yamaoka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Yu Imaizumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Takunori Nagashima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Taiki Furutani
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Takuji Ito
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yohei Okada
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| | - Kazunori Shimizu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
7
|
Nagashima T, Hadiwidjaja S, Ohsumi S, Murata A, Hisada T, Kato R, Okada Y, Honda H, Shimizu K. In Vitro Model of Human Skeletal Muscle Tissues with Contractility Fabricated by Immortalized Human Myogenic Cells. ACTA ACUST UNITED AC 2020; 4:e2000121. [DOI: 10.1002/adbi.202000121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/04/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Takunori Nagashima
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Stacy Hadiwidjaja
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Saki Ohsumi
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Akari Murata
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Takumi Hisada
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University Nagoya 464‐8601 Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences Graduate School of Pharmaceutical Sciences Nagoya University Nagoya 464‐8601 Japan
| | - Yohei Okada
- Department of Neurology Aichi Medical University School of Medicine Aichi 480‐1195 Japan
| | - Hiroyuki Honda
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| | - Kazunori Shimizu
- Department of Biomolecular Engineering Graduate School of Engineering Nagoya University Nagoya 464‐8603 Japan
| |
Collapse
|
8
|
Lodrini AM, Barile L, Rocchetti M, Altomare C. Human Induced Pluripotent Stem Cells Derived from a Cardiac Somatic Source: Insights for an In-Vitro Cardiomyocyte Platform. Int J Mol Sci 2020; 21:ijms21020507. [PMID: 31941149 PMCID: PMC7013592 DOI: 10.3390/ijms21020507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-CMs have to be improved because existing protocols are not completely able to obtain mature CMs recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and advances able to standardize differentiation conditions are needed. Lately, evidences of an epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation of different somatic sources in order to obtain more mature hiPSC-derived CMs.
Collapse
Affiliation(s)
- Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Lucio Barile
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano 6900, Switzerland
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milano 20126, Italy; (A.M.L.); (M.R.)
| | - Claudia Altomare
- Fondazione Cardiocentro Ticino, Lugano 6900, Switzerland;
- Correspondence:
| |
Collapse
|