1
|
Shahrajabian MH, Sun W. The Significance and Importance of dPCR, qPCR, and SYBR Green PCR Kit in the Detection of Numerous Diseases. Curr Pharm Des 2024; 30:169-179. [PMID: 38243947 DOI: 10.2174/0113816128276560231218090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024]
Abstract
Digital PCR (dPCR) is the latest technique that has become commercially accessible for various types of research. This method uses Taq polymerase in a standard polymerase chain reaction (PCR) to amplify a target DNA fragment from a complex sample, like quantitative PCR (qPCR) and droplet digital PCR (dd- PCR). ddPCR may facilitate microRNA (miRNA) measurement, particularly in liquid biopsy, because it has been proven to be more effective and sensitive, and in this method, ddPCR can provide an unprecedented chance for deoxyribonucleic acid (DNA) methylation research because of its capability to increase sensitivity and precision over conventional PCR-based methods. qPCR has also been found to be a valuable standard technique to measure both copy DNA (cDNA) and genomic DNA (gDNA) levels, although the finding data can be significantly variable and non-reproducible without relevant validation and verification of both primers and samples. The SYBR green quantitative real-time PCR (qPCR) method has been reported as an appropriate technique for quantitative detection and species discrimination, and has been applied profitably in different experiments to determine, quantify, and discriminate species. Although both TaqMan qRT-PCR and SYBR green qRT-PCR are sensitive and rapid, the SYBR green qRT-PCR assay is easy and the TaqMan qRT-PCR assay is specific but expensive due to the probe required. This review aimed to introduce dPCR, qPCR, SYBR green PCR kit, and digital PCR, compare them, and also introduce their advantages in the detection of different diseases.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| |
Collapse
|
2
|
Suzuki Y, Shimizu H, Tamai S, Hoshiko Y, Maeda T, Nukazawa K, Iguchi A, Masago Y, Ishii S. Simultaneous detection of various pathogenic Escherichia coli in water by sequencing multiplex PCR amplicons. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:264. [PMID: 36600083 DOI: 10.1007/s10661-022-10863-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Waterborne diseases due to pathogen contamination in water are a serious problem all over the world. Accurate and simultaneous detection of pathogens in water is important to protect public health. In this study, we developed a method to simultaneously detect various pathogenic Escherichia coli by sequencing the amplicons of multiplex PCR. Our newly designed multiplex PCR amplified five genes for pathogenic E. coli (uidA, stx1, stx2, STh gene, and LT gene). Additional two PCR assays (for aggR and eae) were also designed and included in the amplicon sequencing analysis. The same assays were also used for digital PCR (dPCR). Strong positive correlations were observed between the sequence read count and the dPCR results for most of the genes targeted, suggesting that our multiplex PCR-amplicon sequencing approach could provide quantitative information. The method was also successfully applied to monitor the level of pathogenic E. coli in river water and wastewater samples. The approach shown here could be expanded by targeting genes for other pathogens.
Collapse
Affiliation(s)
- Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan.
| | - Hiroki Shimizu
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Shouichiro Tamai
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Yuki Hoshiko
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
- Present address: Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, 67 Asahi-Machi, Kurume-City, Fukuoka, 830-0011, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, 808-0196, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Iguchi
- Department of Animal and Grassland Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoshifumi Masago
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Ibaraki, Japan
| | - Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota, Falcon Heights, MN, USA
- Bio Technology Institute, University of Minnesota, Falcon Heights, MN, USA
| |
Collapse
|
3
|
Single Escherichia coli bacteria detection using a chemiluminescence digital microwell array chip. Biosens Bioelectron 2022; 215:114594. [DOI: 10.1016/j.bios.2022.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
|
4
|
Garcia A, Le T, Jankowski P, Yanaç K, Yuan Q, Uyaguari-Diaz MI. Quantification of human enteric viruses as alternative indicators of fecal pollution to evaluate wastewater treatment processes. PeerJ 2022; 10:e12957. [PMID: 35186509 PMCID: PMC8852272 DOI: 10.7717/peerj.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
We investigated the potential use and quantification of human enteric viruses in municipal wastewater samples of Winnipeg (Manitoba, Canada) as alternative indicators of contamination and evaluated the processing stages of the wastewater treatment plant. During the fall 2019 and winter 2020 seasons, samples of raw sewage, activated sludge, effluents, and biosolids (sludge cake) were collected from the North End Sewage Treatment Plant (NESTP), which is the largest wastewater treatment plant in the City of Winnipeg. DNA (Adenovirus and crAssphage) and RNA enteric viruses (Pepper mild mottle virus, Norovirus genogroups GI and GII, Rotavirus Astrovirus, and Sapovirus) as well as the uidA gene found in Escherichia coli were targeted in the samples collected from the NESTP. Total nucleic acids from each wastewater treatment sample were extracted using a commercial spin-column kit. Enteric viruses were quantified in the extracted samples via quantitative PCR using TaqMan assays. Overall, the average gene copies assessed in the raw sewage were not significantly different (p-values ranged between 0.1023 and 0.9921) than the average gene copies assessed in the effluents for DNA and RNA viruses and uidA in terms of both volume and biomass. A significant reduction (p-value ≤ 0.0438) of Adenovirus and Noroviruses genogroups GI and GII was observed in activated sludge samples compared with those for raw sewage per volume. Higher GCNs of enteric viruses were observed in dewatered sludge samples compared to liquid samples in terms of volume (g of sample) and biomass (ng of nucleic acids). Enteric viruses found in gene copy numbers were at least one order of magnitude higher than the E. coli marker uidA, indicating that enteric viruses may survive the wastewater treatment process and viral-like particles are being released into the aquatic environment. Viruses such as Noroviruses genogroups GI and GII, and Rotavirus were detected during colder months. Our results suggest that Adenovirus, crAssphage, and Pepper mild mottle virus can be used confidently as complementary viral indicators of human fecal pollution.
Collapse
Affiliation(s)
- Audrey Garcia
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tri Le
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul Jankowski
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kadir Yanaç
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Qiuyan Yuan
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
5
|
Molecular Methods for Pathogenic Bacteria Detection and Recent Advances in Wastewater Analysis. WATER 2021. [DOI: 10.3390/w13243551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With increasing concerns about public health and the development of molecular techniques, new detection tools and the combination of existing approaches have increased the abilities of pathogenic bacteria monitoring by exploring new biomarkers, increasing the sensitivity and accuracy of detection, quantification, and analyzing various genes such as functional genes and antimicrobial resistance genes (ARG). Molecular methods are gradually emerging as the most popular detection approach for pathogens, in addition to the conventional culture-based plate enumeration methods. The analysis of pathogens in wastewater and the back-estimation of infections in the community, also known as wastewater-based epidemiology (WBE), is an emerging methodology and has a great potential to supplement current surveillance systems for the monitoring of infectious diseases and the early warning of outbreaks. However, as a complex matrix, wastewater largely challenges the analytical performance of molecular methods. This review synthesized the literature of typical pathogenic bacteria in wastewater, types of biomarkers, molecular methods for bacterial analysis, and their recent advances in wastewater analysis. The advantages and limitation of these molecular methods were evaluated, and their prospects in WBE were discussed to provide insight for future development.
Collapse
|
6
|
Mao Y, Zeineldin M, Usmani M, Uprety S, Shisler JL, Jutla A, Unnikrishnan A, Nguyen TH. Distribution and Antibiotic Resistance Profiles of Salmonella enterica in Rural Areas of North Carolina After Hurricane Florence in 2018. GEOHEALTH 2021; 5:e2020GH000294. [PMID: 33709047 PMCID: PMC7892206 DOI: 10.1029/2020gh000294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 05/07/2023]
Abstract
In this study, water samples were analyzed from a rural area of North Carolina after Hurricane Florence in 2018 and the distribution of the ttrC virulence gene of Salmonella enterica were investigated. We also examined the distribution of culturable S. enterica and determined their antibiotic resistance profiles. Antibiotic resistance genes (ARGs) in the classes of aminoglycoside, beta-lactam, and macrolide-lincosamide-streptogramin B (MLSB) were targeted in this study. The ttrC gene was detected in 23 out of 25 locations. There was a wider and higher range of the ttrC gene in flooded water versus unflooded water samples (0-2.12 × 105 copies/L vs. 0-4.86 × 104 copies/L). Culturable S. enterica was isolated from 10 of 25 sampling locations, which was less prevalent than the distribution of the ttrC gene. The antibiotic resistance profiles were not distinct among the S. enterica isolates. The aminoglycoside resistance gene aac(6')-Iy had the highest relative abundance (around 0.05 copies/16S rRNA gene copy in all isolates) among all ARGs. These findings suggested that the 2018 flooding event led to higher copy numbers of the ttrC genes of S. enterica in some flooded water bodies compared to those in unflooded water bodies. The high ARG level and similar ARG profiles were observed in all S. enterica isolates from both flooded and unflooded samples, suggesting that the antibiotic resistance was prevalent in S. enterica within this region, regardless of flooding.
Collapse
Affiliation(s)
- Yuqing Mao
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Mohamed Zeineldin
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Animal Medicine DepartmentCollege of Veterinary MedicineBenha UniversityBenhaEgypt
| | - Moiz Usmani
- Environmental Engineering SciencesUniversity of FloridaGainesvilleFLUSA
| | - Sital Uprety
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Joanna L. Shisler
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Antarpreet Jutla
- Environmental Engineering SciencesUniversity of FloridaGainesvilleFLUSA
| | | | - Thanh H. Nguyen
- Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|