1
|
Lim X, Zhang C, Chen X. Advances and applications of CRISPR/Cas-mediated interference in Escherichia coli. ENGINEERING MICROBIOLOGY 2024; 4:100123. [PMID: 39628789 PMCID: PMC11611006 DOI: 10.1016/j.engmic.2023.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2024]
Abstract
The bacterium Escherichia coli (E. coli) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of E. coli has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in E. coli. In this review, we briefly describe the CRISPR/Cas9 technology in E. coli, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in E. coli, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in E. coli, and finally highlight the major challenges and future perspectives of this technology.
Collapse
Affiliation(s)
- Xiaohui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| |
Collapse
|
2
|
Catalytic Production of Functional Monomers from Lysine and Their Application in High-Valued Polymers. Catalysts 2022. [DOI: 10.3390/catal13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lysine is a key raw material in the chemical industry owing to its sustainability, mature fermentation process and unique chemical structure, besides being an important nutritional supplement. Multiple commodities can be produced from lysine, which thus inspired various catalytic strategies for the production of these lysine-based chemicals and their downstream applications in functional polymer production. In this review, we present a fundamental and comprehensive study on the catalytic production process of several important lysine-based chemicals and their application in highly valued polymers. Specifically, we first focus on the synthesis process and some of the current industrial production methods of lysine-based chemicals, including ε-caprolactam, α-amino-ε-caprolactam and its derivatives, cadaverine, lysinol and pipecolic acid. Second, the applications and prospects of these lysine-based monomers in functional polymers are discussed such as derived poly (lysine), nylon-56, nylon-6 and its derivatives, which are all of growing interest in pharmaceuticals, human health, textile processes, fire control and electronic manufacturing. We finally conclude with the prospects of the development of both the design and synthesis of new lysine derivatives and the expansion of the as-synthesized lysine-based monomers in potential fields.
Collapse
|
3
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
4
|
Song C, Li Y, Ma W. ATP is not essential for cadaverine production by Escherichia coli whole-cell bioconversion. J Biotechnol 2022; 353:44-50. [PMID: 35660066 DOI: 10.1016/j.jbiotec.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/08/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
ATP plays an essential role in the substrate/product transmembrane transportation during whole-cell bioconversion. This study aimed to address the impact of ATP upon cadaverine synthesis by whole-cell biocatalysts. The results showed no significant change in the ATP content (P = 0.625), and the specific cadaverine yield (P = 0.374) was observed in enzyme-catalyzed cadaverine synthesis with exogenous addition of ATP, indicating that the enzyme-catalyzed process does not require the participation of ATP. Furthermore, a whole-cell biocatalyst co-overexpressed methionine adenosyltransferase (MetK), lysine decarboxylase (CadA), and lysine/cadaverine antiporter (CadB) was constructed and used to investigate the effect of ATP deficiency on the cadaverine production by conversion of L-methionine and L-lysine, simultaneously. The results showed no significant difference (P = 0.585) in the specific cadaverine content between high and low levels of intracellular ATP. In addition, the intra- and extracellular cadaverine concentration and the ratio of ATP/ADP of whole-cell biocatalyst were determined. Results showed that the extracellular cadaverine concentration was much higher than the intracellular concentration, and no significant changes in ATP/ADP ratio during cadaverine synthesis. In contrast, an inhibition effect of the proton motive force (PMF) inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP) on cadaverine production was detected. These findings strongly suggest that cadaverine transport in whole-cell biocatalysts was energized by PMF rather than ATP. Finally, a model was proposed to describe cadaverine's PMF-driven transport under different external pHs during whole-cell biocatalysis. This study is the first to experimentally confirm that the cadaverine production by Escherichia coli whole-cell bioconversion is independent of intracellular ATP, which helps guide the subsequent construction of biocatalysts and optimize transformation conditions.
Collapse
Affiliation(s)
- Chenbin Song
- Tianshui Engineering Research Center for Agricultural Products Deep Processing, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Yijing Li
- Tianshui Engineering Research Center for Agricultural Products Deep Processing, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China
| | - Weichao Ma
- Tianshui Engineering Research Center for Agricultural Products Deep Processing, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741001, China.
| |
Collapse
|
5
|
Zhao C, Zheng T, Feng Y, Wang X, Zhang L, Hu Q, Chen J, Wu F, Chen GQ. Engineered Halomonas spp. for production of l-Lysine and cadaverine. BIORESOURCE TECHNOLOGY 2022; 349:126865. [PMID: 35183730 DOI: 10.1016/j.biortech.2022.126865] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Cadaverine, a derivative of l-lysine, has been used as a monomer for the synthesis of bio-based nylon-5,6. This study engineered Halomonas bluephagenesis TD1.0 by blocking the feedback inhibition, overexpressing the key l-lysine synthesis genes, strengthening the l-lysine export system and increasing the supply of oxaloacetate for production of l-lysine in the supernatant and PHB in the cells. Subsequently, cadaverine biosynthetic pathway was constructed in H. campaniensis LC-9 to improve the efficiency of de novo cadaverine biosynthesis which combines l-lysine producing H. bluephagenesis TDL8-68-259 and cadaverine producing H. campaniensis LC-9-ldcC-lysP. When H. campaniensis LC-9-ldcC-lysP was used as a whole cell catalysis for cadaverine production, the conversion efficiency of l-lysine to cadaverine reached 100% in the presence of 0.05% Triton X-100 for cell membrane permeability enhancement, resulting in 118 g L-1 cadaverine formed in the fermentor. Thus, Halomonas spp. have been successfully constructed for l-lysine and cadaverine production.
Collapse
Affiliation(s)
- Cuihuan Zhao
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, PR China
| | - Taoran Zheng
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Beijing PhaBuilder Biotechnology Co., LTD, Shunyi District, 101399, PR China
| | - Yinghao Feng
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Xuan Wang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, PR China
| | - Lizhan Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Qitiao Hu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Jinchun Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Fuqing Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, PR China; MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
6
|
Ziegler M, Hägele L, Gäbele T, Takors R. CRISPRi enables fast growth followed by stable aerobic pyruvate formation in Escherichia coli without auxotrophy. Eng Life Sci 2022; 22:70-84. [PMID: 35140555 PMCID: PMC8811725 DOI: 10.1002/elsc.202100021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/06/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR interference (CRISPRi) was applied to enable the aerobic production of pyruvate in Escherichia coli MG1655 under glucose excess conditions by targeting the promoter regions of aceE or pdhR. Knockdown strains were cultivated in aerobic shaking flasks and the influence of inducer concentration and different sgRNA binding sites on the production of pyruvate was measured. Targeting the promoter regions of aceE or pdhR triggered pyruvate production during the exponential phase and reduced expression of aceE. In lab-scale bioreactor fermentations, an aceE silenced strain successfully produced pyruvate under fully aerobic conditions during the exponential phase, but loss of productivity occurred during a subsequent nitrogen-limited phase. Targeting the promoter region of pdhR enabled pyruvate production during the growth phase of cultivations, and a continued low-level accumulation during the nitrogen-limited production phase. Combinatorial targeting of the promoter regions of both aceE and pdhR in E. coli MG1655 pdCas9 psgRNA_aceE_234_pdhR_329 resulted in the stable aerobic production of pyruvate with non-growing cells at YP/S = 0.36 ± 0.029 gPyruvate/gGlucose in lab-scale bioreactors throughout an extended nitrogen-limited production phase.
Collapse
Affiliation(s)
- Martin Ziegler
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Lorena Hägele
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Teresa Gäbele
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| |
Collapse
|
7
|
Yi YC, Ng IS. Redirection of metabolic flux in Shewanella oneidensis MR-1 by CRISPRi and modular design for 5-aminolevulinic acid production. BIORESOUR BIOPROCESS 2021; 8:13. [PMID: 38650245 PMCID: PMC10992681 DOI: 10.1186/s40643-021-00366-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
Programming non-canonical organisms is more attractive due to the prospect of high-value chemical production. Among all, Shewanella oneidensis MR-1 possesses outstanding heme synthesis ability and is well-known for electron transfer, thus has high potential in microbial fuel cell and bioremediation. However, heme, as the final product of C4 and C5 pathways, is regulated by heme cluster for the high-value 5-aminolevulinic acid (ALA) for cancer photodynamic therapy, which has never been explored in MR-1. Herein, the heme metabolism in MR-1 was firstly optimized for ALA production. We applied CRISPR interference (CRISPRi) targeted on the genes to fine-tune carbon flux in TCA cycle and redirected the carbon out-flux from heme, leading to a significant change in the amino acid profiles, while downregulation of the essential hemB showed a 2-fold increasing ALA production via the C5 pathway. In contrast, the modular design including of glucokinase, GroELS chaperone, and ALA synthase from Rhodobacter capsulatus enhanced ALA production markedly in the C4 pathway. By integrating gene cluster under dual T7 promoters, we obtained a new strain M::TRG, which significantly improved ALA production by 145-fold. We rewired the metabolic flux of MR-1 through this modular design and successfully produced the high-value ALA compound at the first time.
Collapse
Affiliation(s)
- Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|