1
|
Xue ZF, Cheng WC, Wang L, Qin P, Xie YX, Hu W. Applying the first microcapsule-based self-healing microbial-induced calcium carbonate materials to prevent the migration of Pb ions. ENVIRONMENTAL RESEARCH 2023; 239:117423. [PMID: 37858687 DOI: 10.1016/j.envres.2023.117423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Lead (Pb) accumulation can lead to serious threats to surrounding environments and damage to the liver and kidneys. In the past few years, microbial-induced carbonate precipitation (MICP) technology has been widely applied to achieve Pb immobilization due to its environmentally friendly nature. However, harsh pH conditions can cause the instability of the carbonate precipitation to degrade or dissolve, increasing the potential of Pb2+ migration into nearby environments. In this study, microcapsule-based self-healing microbial-induced calcium carbonate (MICC) materials were applied to prevent Pb migration. The highest sporulation rate of 95.8% was attained at 7 g/L yeast extract, 10 g/L NH4Cl, and 3.6 g/L Mn2+. In the germination phase, the microcapsule not only prevented the bacterial spores from being threatened by the acid treatment but secured their growth and reproduction. Micro analysis also revealed that cerussite, calcite, and aragonite minerals were present, while extracellular polymeric substances (EPSs) were identified via Fourier transform infrared spectroscopy (FTIR). These results confirm their involvement in combining Pb2+ and Ca2+. The immobilization efficiency of above 90% applied to MICC materials was attained, while it of below 5% applied to no MICC use was attained. The findings explore the potential of applying microcapsule-based self-healing MICC materials to prevent Pb ion migration when the calcium carbonate degrades under harsh pH conditions.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Peng Qin
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Yi-Xin Xie
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an, 710055, China.
| |
Collapse
|
2
|
Wang X, Wanasinghe DN, Zhang J, Ma J, Zhou P, Zhang L, Lu Y, Zhang Z. Insights from the Endophytic Fungi in Amphisphaeria (Sordariomycetes): A. orixae sp. nov. from Orixa japonica and Its Secondary Metabolites. Microorganisms 2023; 11:1268. [PMID: 37317242 DOI: 10.3390/microorganisms11051268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Endophytic fungi are a remarkably diverse group of microorganisms that have imperceptible associations with their hosts for at least a part of their life cycle. The enormous biological diversity and the capability of producing bioactive secondary metabolites such as alkaloids, terpenoids, and polyketides have attracted the attention of different scientific communities, resulting in numerous investigations on these fungal endophytes. During our surveys of plant-root-based fungi in the mountain areas of Qingzhen, Guizhou Province, several isolates of endophytic fungi were identified. In this study, a novel endophytic fungus was discovered in the roots of a medicinal plant (Orixa japonica) in Southern China and introduced as a new species (Amphisphaeria orixae) based on morphological evidence and molecular phylogenetic analysis (combined ITS and LSU sequence data). To the best of our knowledge, A. orixae is the first reported endophyte as well as the first hyphomycetous asexual morph in Amphisphaeria. A new isocoumarin, (R)-4,6,8-trihydroxy-5-methylisochroman-1-one (1), and 12 known compounds (2-13) were isolated from the rice fermentation products of this fungus. Using 1D- and 2D-NMR, mass spectrometry, and ECD studies, their structures were identified. The antitumor activity of these compounds was tested. Unfortunately, none of the compounds tested showed significant antitumor activity.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang 550014, China
| | - Dhanushka N Wanasinghe
- Centre for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, China
| | - Jingyi Zhang
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Jian Ma
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Peifeng Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang 550014, China
| | - Lijuan Zhang
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Yongzhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Zhen Zhang
- Guizhou Academy of Testing and Analysis, Guizhou Academy of Sciences, Guiyang 550014, China
| |
Collapse
|
3
|
Asitok A, Ekpenyong M, Akwagiobe E, Asuquo M, Rao A, Ubi D, Iheanacho J, Ikharia E, Antai A, Essien J, Antai S. Interspecific protoplast fusion of atmospheric and room-temperature plasma mutants of Aspergillus generates an L-asparaginase hyper-producing hybrid with techno-economic benefits. Prep Biochem Biotechnol 2022:1-14. [PMID: 36449415 DOI: 10.1080/10826068.2022.2150643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The axenic culture of Aspergillus candidus (Asp-C) produced an anti-leukemic L-asparaginase while Aspergillus sydowii (Asp-S) produced the acrylamide-reduction type. Upon mutagenesis by atmospheric and room-temperature plasma (ARTP), their individual L-asparaginase activities improved 2.3-folds in each of Ile-Thr-Asp-C-180-K and Val-Asp-S-180-E stable mutants. Protoplast fusion of selected stable mutants generated fusant-09 with improved anti-leukemic activity, acrylamide reduction, higher temperature optimum and superior kinetic parameters. Submerged (SmF) and solid-state fermentation (SSF) types were compared; likewise batch, fed-batch and continuous fermentation modes; and fed-batch submerged fermentation was selected on the basis of impressive techno-economics. Fusant L-asparaginase was purified by PEG/Na+ citrate aqueous two-phase system and molecular exclusion chromatography to 69.96 and 146.21-fold, respectively, and characterized by molecular weight, specificity, activity and stability to chemical and physical agents. Michaelis-Menten kinetics, evaluated under optimum conditions gave Km, Vmax, Kcat, and Kcat/Km as 1.667 × 10-3 M, 1666.67 µmol min-1 mg-1 protein, 645.99 s-1 and 3.88 × 105 M-1 s-1 respectively. In-vitro cytotoxicity of HL-60 cell lines by fusant-09 L-asparaginase improved 3.00 and 18.71-folds from mutants Ile-Thr-Asp-C-180-K and Val-Asp-S-180-E, and from 5.73 and 32.55 from respective original strains. Free-radical scavenging and acrylamide reduction improvements were intermediate. Fusant-09 L-asparaginase is strongly recommended for sustainable economic anti-leukemic and food industry applications.
Collapse
Affiliation(s)
- Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Ernest Akwagiobe
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Marcus Asuquo
- Department of Hematology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Anitha Rao
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - David Ubi
- Food and Industrial Microbiology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Juliet Iheanacho
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Eloghosa Ikharia
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Agnes Antai
- Department of Economics, Faculty of Social Sciences, University of Calabar, Calabar, Nigeria
| | - Joseph Essien
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
- University of Calabar Collection of Microorganisms (UCCM), Department of Microbiology, University of Calabar, Calabar, Nigeria
| |
Collapse
|
4
|
Morales DP, Robinson AJ, Pawlowski AC, Ark C, Kelliher JM, Junier P, Werner JH, Chain PSG. Advances and Challenges in Fluorescence in situ Hybridization for Visualizing Fungal Endobacteria. Front Microbiol 2022; 13:892227. [PMID: 35722318 PMCID: PMC9199388 DOI: 10.3389/fmicb.2022.892227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Several bacteria have long been known to interact intimately with fungi, but molecular approaches have only recently uncovered how cosmopolitan these interactions are in nature. Currently, bacterial–fungal interactions (BFI) are inferred based on patterns of co-occurrence in amplicon sequencing investigations. However, determining the nature of these interactions, whether the bacteria are internally or externally associated, remains a grand challenge in BFI research. Fluorescence in situ hybridization (FISH) is a robust method that targets unique sequences of interest which can be employed for visualizing intra-hyphal targets, such as mitochondrial organelles or, as in this study, bacteria. We evaluate the challenges and employable strategies to resolve intra-hyphal BFI to address pertinent criteria in BFI research, such as culturing media, spatial distribution of bacteria, and abundance of bacterial 16S rRNA copies for fluorescent labeling. While these experimental factors influence labeling and detection of endobacteria, we demonstrate how to overcome these challenges thorough permeabilization, appropriate media choice, and targeted amplification using hybridization chain reaction FISH. Such microscopy imaging approaches can now be utilized by the broader research community to complement sequence-based investigations and provide more conclusive evidence on the nature of specific bacterial–fungal relationships.
Collapse
Affiliation(s)
- Demosthenes P. Morales
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
- *Correspondence: Demosthenes P. Morales,
| | - Aaron J. Robinson
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Andrew C. Pawlowski
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Caitlyn Ark
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Julia M. Kelliher
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Pilar Junier
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - James H. Werner
- Center of Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Patrick S. G. Chain
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|