1
|
Almutairi HH. Microbial communities in petroleum refinery effluents and their complex functions. Saudi J Biol Sci 2024; 31:104008. [PMID: 38766506 PMCID: PMC11097069 DOI: 10.1016/j.sjbs.2024.104008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Petroleum refinery effluents (PRE) are a significant cause of pollution. It contains toxic compounds such as total petroleum hydrocarbons (TPH), and polycyclic aromatic hydrocarbons (PAHs), as well as heavy metals. They show a huge threat facing the aquaculture habitats, human health, and the environment if they are not treated before discharging into the environment. Physical and chemical procedures are used to treat hydrocarbon pollution in PRE, but these techniques often result in the formation of hazardous by-products during the remediation process. However, PRE contains various microbial communities, including bacteria, yeast, microalgae, and fungi. The bioremediation and biodegradation of oil contaminants are the primary functions of these microbial communities. However, these microorganisms can perform various additional functions including but not limited to heavy metals removal, production of biosurfactants, and nitrogen fixation. This review contributes to the comprehension of natural microbial communities and their complex functions in petroleum refinery effluents. Understanding microbial communities would facilitate the advancement of innovative biotechnology aimed at treating PRE, improving bioremediation processes, and potentially transforming PRE into valuable bio-products. Moreover, it assists in determining the most effective bioaugmentation strategy to enhance biodegradation and bioremediation in PRE. The review highlights the potential for sustainable green approaches using microbial communities to replace toxic chemical therapies and expensive physical treatments in the future.
Collapse
Affiliation(s)
- Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
2
|
Li Y, Wu X, Wang Y, Gao Y, Li K. A microbial flora with superior pollutant removal efficiency and its fermentation process optimization. AMB Express 2023; 13:113. [PMID: 37848696 PMCID: PMC10581995 DOI: 10.1186/s13568-023-01604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
Microbial flora plays an important role in microorganism-enhanced technology. The pollutant degradation ability and viable counts of these agents are crucial to guarantee their practical application. In this study, an efficient pollutant-degrading microbial flora was screened, its medium components and culture conditions were optimized, and its effect was verified in zeolite trickling filter towers. After a 24 h culture under the optimal conditions, the viable count reached 4.76 × 109 cfu/mL, with the degradation rates of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) increased to 93.5%, 100%, 68.3%, 32.6%, and 85%, respectively. After optimizing the feeding strategy, the concentration of viable bacteria reached 5.80 × 109 cfu/mL. In the application effect verification experiment, the degradation rates of NH4+-N, TN, TP, and COD in the experimental group reached 96.69%, 75.18%, 73.82%, and 90.83%, respectively, showing a significant improvement compared to the results of the control group. The main components in the control group were Dokdonella, Brevundimonas, Alishewanella, Rhodobacter, Pseudoxanthomonas, and Thauera, whereas those in the experimental group were Dokdonella, Proteocatella, Rhodobacter, Dechlomonas, and Nitrospira. Proteocatella, Dechlomonas, and Nitrosra, which were unique to the experimental group, are common bacteria used for nitrogen and phosphorus removal. This explains the difference in the sewage treatment capacity between the two groups. This study provides an alternative sewage treatment microbial flora with a reasonable production cost and high degradation efficiency for NH4+-N, TN, TP, and COD.
Collapse
Affiliation(s)
- Yonghong Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiuxiu Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yun Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingman Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Keke Li
- HeNanJinBaiHe Biotechnology Co., LTD, Anyang, 450000, Henan, China.
| |
Collapse
|
3
|
Yi M, Wang H, Ma X, Wang C, Wang M, Liu Z, Lu M, Cao J, Ke X. Efficient nitrogen removal of a novel Pseudomonas chengduensis strain BF6 mainly through assimilation in the recirculating aquaculture systems. BIORESOURCE TECHNOLOGY 2023; 379:129036. [PMID: 37037330 DOI: 10.1016/j.biortech.2023.129036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Biological nitrogen removal has received increasing attention in wastewater treatment. A bacterium with excellent nitrogen removal performance was isolated from biofilters of recirculating aquaculture systems (RAS) and identified as Pseudomonas chengduensis BF6. It was indicated that inorganic nitrogen is transformed into gaseous and biological nitrogen by the metabolic pathways of denitrification, anammox, and assimilation, which is the main nitrogen removal pathway of strain BF6. The strain BF6 could effectively remove nitrogen within 24 h under the conditions of ammonia, nitrate, nitrite, and mixed nitrogen sources with maximum total nitrogen removal efficiencies reaching 97.00 %, 61.40 %, 79.10 %, and 84.98 %, respectively. The strain BF6 exhibited total nitrogen removal efficiency of 91.14 %, altered the microbial diversity and enhanced the relative abundance of Pseudomonas in the RAS biofilter. These findings demonstrate that Pseudomonas sp. BF6 is a highly efficient nitrogen-removing bacterium with great potential for application in aquaculture wastewater remediation.
Collapse
Affiliation(s)
- Mengmeng Yi
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - He Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Xiaona Ma
- Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China; College of Bio-systems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Chun Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, PR China
| | - Miao Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Zhigang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | - Maixin Lu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Jianmeng Cao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China
| | - Xiaoli Ke
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, PR China.
| |
Collapse
|
4
|
Liu X, Zhang Q, Yang X, Wu D, Li Y, Di H. Isolation and characteristics of two heterotrophic nitrifying and aerobic denitrifying bacteria, Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6. ENVIRONMENTAL RESEARCH 2023; 220:115240. [PMID: 36621544 DOI: 10.1016/j.envres.2023.115240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In order to solve nitrogen pollution in environmental water, two heterotrophic nitrifying and aerobic denitrifying strains isolated from acid paddy soil were identified as Achromobacter sp. strain HNDS-1 and Enterobacter sp. strain HNDS-6 respectively. Strain HNDS-1 and strain HNDS-6 exhibited amazing ability to nitrogen removal. When (NH4)2SO4, KNO3, NaNO2 were used as nitrogen resource respectively, the NH4+-N, NO3--N, NO2--N removal efficiencies of strain HNDS-1 were 93.31%, 89.47%, and 100% respectively, while those of strain HNDS-6 were 82.39%, 96.92%, and 100%. And both of them could remove mixed nitrogen effectively in low C/N (C/N = 5). Strain HNDS-1 could remove 76.86% NH4+-N and 75.13% NO3--N. And strain HNDS-6 can remove 65.07% NH4+-N and 78.21% NO3--N. A putative ammonia monooxygenase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein and nitric oxide reductase of strain HNDS-1, while hydroxylamine reductase, nitrite reductase, nitrate reductase, assimilatory nitrate reductase, nitrate/nitrite transport protein, and nitric oxide reductase of strain HNDS-6 were identified by genomic analysis. DNA-SIP analysis showed that genes Nxr, narG, nirK, norB, nosZ were involved in nitrogen removal pathway, which indicates that the denitrification pathway of strain HNDS-1 and strain HNDS-6 was NO3-→NO2-→NO→N2O→N2 during NH4+-N removal process. And the nitrification pathway of strain HNDS-1 and strain HNDS-6 was NO2-→NO3-, but the nitrification pathway of NH4+→ NO2- needs further studies.
Collapse
Affiliation(s)
- Xiaoting Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaoyu Yang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Dan Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
5
|
Chen P, Wang J, Lv J, Wang Q, Zhang C, Zhao W, Li S. Nitrogen removal by Rhodococcus sp. SY24 under linear alkylbenzene sulphonate stress: Carbon source metabolism activity, kinetics, and optimum culture conditions. BIORESOURCE TECHNOLOGY 2023; 368:128348. [PMID: 36400273 DOI: 10.1016/j.biortech.2022.128348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Artificial intervention combined with stress acclimation was used to screen a heterotrophic nitrifying-aerobic denitrifying (HN-AD) bacterial, strain Rhodococcus SY24, resistant to linear alkylbenzenesulfonic acid (LAS) stress. When LAS was<15 mg/L, strain SY24 performed better cell growth and carbon source metabolism activity. The maximum nitrification and denitrification rates of SY24 under LAS stress could reach 1.18 mg/L/h and 1.05 mg/L/h, respectively, which were 13.80 % and 8.81 % higher than those of the original strain CPZ24. Higher LAS tolerance was seen in the functional genes (amoA, nxrA, napA, narG, nirK, nirS, norB, and nosZ). Response surface modeling revealed that 2 mg/L LAS, sodium succinate as a carbon source, 190 rams, and carbon/nitrogen 11 were the ideal culture conditions for SY24 to nitrogen removal under the LAS environment. This study offered a new screening strategy for the functional species, and strain SY24 showed significant LAS tolerance and HN-AD potential.
Collapse
Affiliation(s)
- Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jingli Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Wuhan Economic and Technological Development Zone (Hanan District) Ecological Environment Monitoring Station, Wuhan 430090, China
| | - Jie Lv
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wenjie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shaopeng Li
- Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
6
|
Ji XM, Zhang Q, Liu W, Cai S, Chen L, Cai T, Yu H. The organics-mediated microbial dynamics and mixotrophic metabolisms in anammox consortia under micro-aerobic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116262. [PMID: 36183528 DOI: 10.1016/j.jenvman.2022.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The engineering applications of mainstream anaerobic ammonium oxidation (anammox) have raised increasing attention due to its energy-efficient, however, the organics-mediated microbial dynamics and mixotrophic metabolisms in anammox consortia under micro-aerobic conditions are still elusive. Here, the response of the anammox process to sodium acetate and glucose at a C/N ratio ranging from 0 to 0.5 was investigated under micro-aerobic conditions, respectively. Results showed that the additional glucose could promote the nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of anammox processes at a low C/N ratio (0.3), representing 84.00% and 0.53 N kg·m-3·d-1. The introduced organics could regulate the diversity of the microbial community and simplify the microbial relationship in anammox consortia. Anammox could not benefit from the introduced sodium acetate, while glucose could effectively enhance the anammox activity and microbial interactions in anammox consortia. Glucose might also stimulate the mixotrophic mechanism of Ca. Kuenenia, further promotes the proliferation of anammox sludge under micro-aerobic conditions. This study reveals that glucose could positively mediate microbial interactions and mixotrophic metabolism in anammox consortia under micro-aerobic conditions, which raises a new horizon for the proliferation of anammox sludge for mainstream engineering applications.
Collapse
Affiliation(s)
- Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Shu Cai
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, United States
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hongxia Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Zhang X, Xia Y, Zeng Y, Sun X, Tao R, Mei Y, Qu M. Simultaneous nitrification and denitrification by Pseudomonas sp. Y-5 in a high nitrogen environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69491-69501. [PMID: 35562612 DOI: 10.1007/s11356-022-20708-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. Y-5, a strain with simultaneous nitrification and denitrification (SND) capacity, was isolated from the Wuhan Municipal Sewage Treatment Plant. This strain could rapidly remove high concentrations of inorganic nitrogen. Specifically, Pseudomonas sp. Y-5 removed 103 mg/L of NH4+-N in 24 h without nitrate or nitrite accumulation when NH4+-N was its sole nitrogen source. The NH4+-N removal efficiency (RE) was 97.26%, and the average removal rate (RR) was 4.30 mg/L/h. Strain Y-5 also removed NO3--N and NO2--N even in aerobic conditions, with average RRs of 4.39 and 4.23 mg/L/h, respectively, and REs of up to 99.34% and 95.81% within 24 h. When cultured in SND medium (SNDM-1), strain Y-5 achieved an NH4+-N RE of up to 97.80% and a total nitrogen (TN) RE of 93.01%, whereas NO3--N was fully depleted in 48 h. Interestingly, high nitrite concentrations did not inhibit the nitrification capacity of Y-5 when grown in SNDM-2, the RE of NH4+-N and TN reached 96.29% and 94.26%, respectively, and nitrite was consumed completely. Strain Y-5 also adapted well to high concentrations of ammonia (~401.68 mg NH4+-N/L) or organic nitrogen (~315.12 mg TN/L). Our results suggested that Pseudomonas sp. Y-5 achieved efficient simultaneous nitrification and denitrification, thus demonstrating its potential applicability in the treatment of nitrogen-polluted wastewater.
Collapse
Affiliation(s)
- Xiaoying Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yuxiang Xia
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yiwei Zeng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xia Sun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ruidong Tao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yunjun Mei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
8
|
Shi Y, Hu Y, Liang D, Wang G, Xie J, Zhu X. Enhanced denitrification of sewage via bio-microcapsules embedding heterotrophic nitrification-aerobic denitrification bacteria Acinetobacter pittii SY9 and corn cob. BIORESOURCE TECHNOLOGY 2022; 358:127260. [PMID: 35550921 DOI: 10.1016/j.biortech.2022.127260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
In this work, bio-microcapsules were prepared by embedding heterotrophic nitrification and aerobic denitrification (HN-AD) bacteria (Acinetobacter Pittii SY9) and corn cob. Bio-microcapsules (20 g/L of corn cob and 30% v/v suspension of strain SY9) were porous (pore size 2579.74-3725.44 nm; porosity 53.6%-79.9%). Under the appropriate conditions (C/N > 2, temperature of 20-35 ℃, rotation speed of 100-120 rpm, pH of 7-9), TN removal efficiency of bio-microcapsules reached 94.4%, and 74.0% of nitrogen was converted into N2. The results of kinetics fitting indicated that aerobic denitrification was the limiting step during HN-AD process. Bio-microcapsules could slow the carbon release of corn cob for 120 days, which ensuring high HN-AD performance even at low C/N of 2.8. Bio-microcapsule SBR could stably run for 88 days with TN removal efficiency > 90% for synthetic sewage. Bio-microcapsules embedding strain SY9 and corn cob have prospective applications for enhancing denitrification of sewage.
Collapse
Affiliation(s)
- Yunqi Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
9
|
Wang L, Liu Z, Jiang X, Li A. Aerobic granulation of nitrifying activated sludge enhanced removal of 17α-ethinylestradiol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149546. [PMID: 34438142 DOI: 10.1016/j.scitotenv.2021.149546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The positive correlation between the nitrification activity of activated sludge and 17α-ethinylestradiol (EE2) removal has been widely reported. However, up to now the effect of the granulation of nitrifying activated sludge (NAS) on EE2 removal has not been determined. In this study, nitrifying granular sludge (NGS) exhibited more effective EE2 removal efficiency with 3.705 μgEE2∙(gMLSS∙h)-1 in a sequential batch reactor (SBR). Through the artificial neural network (ANN) model and Spearman correlation analysis, nitrite accumulation was demonstrated to be the key factor affecting EE2 removal. Notably, under the same aeration condition (0.15 L/min), nitrite accumulation was more easily achieved in NGS because of its dense structure. Full-length 16S rRNA gene sequencing suggested that EE2 could strongly influence the microbial communities of NAS and NGS. NGS exhibited an increase in community diversity and richness, but NAS exhibited a decrease. In addition, the relative abundance of Nitrosomonas (ammonia-oxidizing bacteria, AOB) decreased considerably in both NAS and NGS, whereas the expression of amoA and nirK genes in Nitrosomonas was upregulated. It was suggested that Nitrosomonas was forced to regulate its gene expression to resist the negative effects of EE2. Denitrifying bacteria, such as Comamonas, were enriched in both NAS and NGS, and there were more species of heterotrophs that can degrade micropollutants in NGS with exposure to EE2. The transformation pathways of EE2 were uniform in NAS and NGS. Ammonia monooxygenase (AMO) in AOB directly biotransformed EE2 while reactive species produced by AOB chemically transformed EE2. Heterotrophs degraded EE2 and its transformation products (TPs) generated by AOB. According to TPs and microbial structure, NGS exhibited better performance than NAS regarding the collaborative removal of EE2 by AOB and heterotrophs. These results provide important information for the development and application of NGS to treat wastewater containing estrogen and high-strength ammonium.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifang Liu
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoman Jiang
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Anjie Li
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
10
|
Dong L, Ge Z, Qu W, Fan Y, Dai Q, Wang J. Characteristics and mechanism of heterotrophic nitrification/aerobic denitrification in a novel Halomonas piezotolerans strain. J Basic Microbiol 2021; 62:124-134. [PMID: 34796543 DOI: 10.1002/jobm.202100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 11/06/2021] [Indexed: 11/06/2022]
Abstract
A strain was isolated from an activated sludge system and identified as Halomonas piezotolerans HN2 in this study, which is the first strain in H. piezotolerans with the capability of heterotrophic nitrification and aerobic denitrification. Strain HN2 showed the maximum nitrogen removal rate of 9.10 mg/L/h by utilizing ammonium at the salinity of 3.0%. Under saline environment, HN2 could remove nitrogen efficiently in neutral and slightly alkaline environments, with the carbon sources of sodium succinate and sodium citrate and the C/N ratio of 15-20, and the maximum removal efficiencies of ammonium, nitrite, and nitrate were 100%, 96.35%, and 99.7%, respectively. The genomic information revealed the presence of amoA, napA, and nosZ genes in strain HN2, and the target bands of nirS were obtained via a polymerase chain reaction. Therefore, we inferred that ammonium was mainly utilized for the growth of strain HN2 through assimilation, and another part of the initial ammonium was converted into nitrate through nitrification, and then into gaseous nitrogen through denitrification. This report indicated the potential application of strain HN2 and other nitrifying and denitrifying Halomonas strains in the removal of nitrogen pollution in marine-related environments and also implies the important role of Halomonas in the nitrogen cycle process of the ocean.
Collapse
Affiliation(s)
- Lingxi Dong
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Zhewen Ge
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Yingping Fan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Qiuping Dai
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China.,Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|