1
|
Kawamura Y, Sugiura S, Araseki H, Chisuga T, Nakano S. Structural and functional analysis of l-methionine oxidase identified through sequence data mining. J Biosci Bioeng 2024; 138:391-398. [PMID: 39142977 DOI: 10.1016/j.jbiosc.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
l-Amino acid oxidase (LAAO), an FAD-dependent enzyme, catalyzes the oxidation of l-amino acids (l-AAs) to their corresponding imino acids. While LAAOs, which can oxidize charged or aromatic l-AAs specifically, have been extensively characterized across various species, LAAOs that have high specificity toward alkyl-chain l-AAs, such as l-Met, are hardly characterized for now. In this study, we screened a highly specific l-Met oxidizing LAAOs from Burkholderiales bacterium (BbMetOx) and Undibacterium sp. KW1 (UndMetOx) using sequence similarity network (SSN) analysis. These enzymes displayed an order of magnitude higher specific activity towards l-Met compared to other l-AAs. Enzyme activity assays showed that these LAAOs operate optimally at moderate condition because the optimal pH and Tm values were pH 7.0 and 58-60°C. We determined the crystal structures of wild-type BbMetOx (BbMetOx(WT)) and an inactivated mutant, BbMetOx (K304A), at 2.7 Å and 2.2 Å resolution, respectively. The overall structure of BbMetOx is closely similar to other known LAAOs of which structures were determined. Comparative analysis of the BbMetOx structures revealed significant conformational changes in the catalytic domain, particularly a movement of approximately 8 Å in the Cα atom of residue Y180. Further analysis highlighted four residues, i.e., Y180, M182, F300, and M302, as critical for l-Met recognition, with alanine substitution at these positions resulting in loss of activity. This study not only underscores the utility of SSN for discovering novel LAAOs but also advances our understanding of substrate specificity in this enzyme family.
Collapse
Affiliation(s)
- Yui Kawamura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sayaka Sugiura
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hayato Araseki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Taichi Chisuga
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
2
|
Nemoto M, Muranushi W, Shuting C, Saito Y, Sugimori D, Yamada M. Beneficial base substitutions in Escherichia coli fucO gene for enhancement of glycolic acid production. J Biosci Bioeng 2024; 138:301-307. [PMID: 39079834 DOI: 10.1016/j.jbiosc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 09/11/2024]
Abstract
Microbial production of glycolic acid (GA) from ethylene glycol is extensively used in a variety of industries because ethylene glycol is not only an inexpensive raw material but also the main component of industrial wastes. In this study, we produced GA from ethylene glycol using Escherichia coli overexpressing the endogenous 1,2-propanediol oxidoreductase (fucO) and lactaldehyde dehydrogenase (aldA) genes. To increase GA productivity, we screened a random mutant library generated using an error-prone polymerase chain reaction of fucO and obtained FucO mutants MF2-9 and MF6-9 with enhanced GA production in Lysogeny Broth medium containing 800 mM ethylene glycol. MF2-9 contained three amino acid substitutions (D23E, E222K, and G363S) and two synonymous mutations (coding DNA [c.] 93G > A and c.1131T > C) in fucO. MF6-9 contained one amino acid substitution (L377H) in FucO. An amino acid substitution (L377H) and a single synonymous mutation (c.1131T > C) in fucO contributed to the enhancement in GA production. Notably, cell lysates from E. coli harboring a synonymous mutation (c.1131T > C) or amino acid substitution (L377H) in fucO showed that only AldA activity was 1.3-fold higher than that of the cell lysate from E. coli harboring the wild-type fucO. We confirmed that c.1131T > C and L377H mutations increased aldA expression in E. coli. Analysis of mRNA levels and simulation of mRNA stabilization indicated that base substitutions at positions c.1130T, which corresponds to L377H amino acid substitution, and c.1131T increased aldA expression due to partial destabilization of the mRNA. These findings will be useful for the large-scale microbial production of GA from industrial waste.
Collapse
Affiliation(s)
- Mayu Nemoto
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Wataru Muranushi
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Chen Shuting
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yusuke Saito
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Sugimori
- Materials Science Course, Faculty of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Miwa Yamada
- Faculty of Agriculture, Department of Biological Chemistry and Food Science, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Agri-Innovation Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
3
|
He W, Zhang X, Zou Y, Li J, Chang L, He YC, Jin Q, Ye J. Effective synthesis of circRNA via a thermostable T7 RNA polymerase variant as the catalyst. Front Bioeng Biotechnol 2024; 12:1356354. [PMID: 38655387 PMCID: PMC11035883 DOI: 10.3389/fbioe.2024.1356354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Circular RNAs (circRNAs) are endogenous noncoding RNAs (ncRNAs) with transcriptional lengths ranging from hundreds to thousands. circRNAs have attracted attention owing to their stable structure and ability to treat complicated diseases. Our objective was to create a one-step reaction for circRNA synthesis using wild-type T7 RNA polymerase as the catalyst. However, T7 RNA polymerase is thermally unstable, and we streamlined circRNA synthesis via consensus and folding free energy calculations for hotspot selection. Because of the thermal instability, the permuted intron and exon (PIE) method for circRNA synthesis is conducted via tandem catalysis with a transcription reaction at a low temperature and linear RNA precursor cyclization at a high temperature. Methods To streamline the process, a multisite mutant T7 RNA polymerase (S430P, N433T, S633P, F849I, F880Y, and G788A) with significantly improved thermostability was constructed, and G788A was used. Results The resulting mutant exhibited stable activity at 45°C for over an hour, enabling the implementation of a one-pot transcription and cyclization reaction. The simplified circRNA production process demonstrated an efficiency comparable to that of the conventional two-step reaction, with a cyclization rate exceeding 95% and reduced production of immunostimulatory dsRNA byproducts.
Collapse
Affiliation(s)
- Wei He
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Vazyme Biotech Co., Ltd, Nanjing, China
| | | | | | - Ji Li
- Vazyme Biotech Co., Ltd, Nanjing, China
| | - Le Chang
- Vazyme Biotech Co., Ltd, Nanjing, China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou, China
| | | | - Jianren Ye
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Yamaguchi H, Takahashi K, Tatsumi M, Tagami U, Mizukoshi T, Miyano H, Sugiki M. Development of a novel single-chain l-glutamate oxidase from Streptomyces sp. X-119-6 by inserting flexible linkers. Enzyme Microb Technol 2023; 170:110287. [PMID: 37487431 DOI: 10.1016/j.enzmictec.2023.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
L-glutamate oxidase (LGOX, EC: 1.4.3.11) is an oxidoreductase that catalyzes L-glutamate deamination. LGOX from Streptomyces sp. X-119-6 is used widely for L-glutamate quantification in research and industrial applications. This enzyme encoded as a single precursor chain that undergoes post-translational cleavage to four fragments by an endogenous protease to become highly active. Efficient preparation of active LGOX by heterologous expression without proteolysis process should be indispensable for wide application of this enzyme. Thus, developing an LGOX that requires no protease treatment should expand the potential applications of recombinant LGOX. In this report, we succeeded in obtaining an active single-chain LGOX by connecting the four fragments of the mature form with insertion of flexible linkers. The most active single-chain mutant showed the similar activity to that of the mature form from Streptomyces sp. X-119-6. The structure of this mutant was determined at 2.9 Å resolution by X-ray crystallography. It was revealed that this single-stranded mutant had the similar conformation to that of mature form. This single-chain LGOX can be produced efficiently and should expand LGOX applications.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| | - Kazutoshi Takahashi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Moemi Tatsumi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Uno Tagami
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Toshimi Mizukoshi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Hiroshi Miyano
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Masayuki Sugiki
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan.
| |
Collapse
|