1
|
Ding Y, Chen ZH, Cui J, Ding XY, Gao XD, Wang N. Site-directed mutagenesis leads to the optimized transglycosylation activity of endo-beta-N-acetylglucosaminidase from Trypanosoma brucei. Glycoconj J 2024; 41:279-289. [PMID: 39340613 DOI: 10.1007/s10719-024-10166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/19/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are pivotal enzymes in the degradation and remodeling of glycoproteins, which catalyze the cleavage or formation of β-1,4-glycosidic bond between two N-acetylglucosamine (GlcNAc) residues in N-linked glycan chains. It was investigated that targeted mutations of amino acids in ENGases active site may modulate their hydrolytic and transglycosylation activities. Endo-Tb, the ENGase derived from Trypanosoma brucei, belongs to the glycoside hydrolase family 85 (GH85). Our group previously demonstrated that Endo-Tb exhibits hydrolytic activity toward high-mannose and complex type N-glycans and preliminarily confirmed its transglycosylation potential. In this study, we further optimized the transglycosylation activity of recombinant Endo-Tb by focusing on the N536A, E538A and Y576F mutants. A comparative analysis of their transglycosylation activity with that of the wild-type enzyme revealed that all mutants exhibited enhanced transglycosylation capacity. The N536A mutant exhibited the most pronounced improvement in transglycosylation activity with a significant reduction in hydrolytic activity. It is suggested that Endo-Tb N536A possesses the potential as a tool for synthesizing a wide array of glycoconjugates bearing high-mannose and complex type N-glycans.
Collapse
Affiliation(s)
- Yi Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Zheng-Hui Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Juan Cui
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xin-Yu Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Ishii N, Inoue S, Sano K, Takahashi S, Matsuo I. Synthesis of a fluorescent probe for measuring the activity of endo-β-N-acetylglucosaminidases recognizing hybrid-type N-glycans. Bioorg Med Chem 2024; 100:117612. [PMID: 38290307 DOI: 10.1016/j.bmc.2024.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
A fluorescence-quenching-based assay system was constructed to determine the hydrolytic activity of endo-β-N-acetylglucosaminidases (ENGases) interacting with hybrid-type N-glycans. This was achieved using a dual-labeled fluorescent probe with a nonasaccharide structure. We produced the nonasaccharide skeleton by the stepwise glycosylation of the galactose residue on a galactosyl chitobiose derivative. Next, we introduced azido and acetoxy groups into the nonasaccharide derivative in a stepwise manner, which led to stereochemistry inversion at both the C-4 and C-2 hydroxy groups on its galactose residue. The protecting groups of the resulting nonasaccharide derivative were removed, and the derivative was labeled with an N-methylanthraniloyl group to obtain a reporter dye and a 2,4-dinitrophenyl group as a quenching molecule to obtain target probe 1. The use of this probe along with a microplate reader enabled a facile evaluation of the hydrolytic activities of ENGases Endo-H, Endo-M, Endo-F3, Endo-S, and Endo-CC. Furthermore, this probe could also assist in the search for novel ENGases that are specific to hybrid-type N-glycans.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Shusei Inoue
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Satoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
3
|
Doi K, Mitani A, Nakakita SI, Higuchi Y, Takegawa K. Characterization of novel endo-β-N-acetylglucosaminidases from intestinal Barnesiella intestinihominis that hydrolyze multi-branched complex-type N-glycans. J Biosci Bioeng 2024; 137:101-107. [PMID: 38142217 DOI: 10.1016/j.jbiosc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze N-linked glycans. Many ENGases have been characterized, but few have been identified with hydrolytic activity towards multi-branched complex-type N-glycans. In this study, three candidate ENGases were identified from Barnesiella intestinihominis based on database searches and phylogenetic analysis. A domain search identified the N x E motif in all three candidates, suggesting that they were members of glycosyl hydrolase family 85 (GH85). The three candidate ENGases, named Endo-BIN1, Endo-BIN2, and Endo-BIN3, were expressed in Escherichia coli cells, and their hydrolytic activity towards N-glycans and glycoproteins was measured by high performance liquid chromatography analysis and SDS-PAGE analysis. All ENGases showed hydrolytic activity towards glycoproteins, but only Endo-BIN2 and Endo-BIN3 showed hydrolytic activity towards pyridylaminated N-glycans. The optimum pH of Endo-BIN1, Endo-BIN2, and End-BIN3 was pH 6.5, 4.0, and 7.0, respectively. We measured substrate specificities of Endo-BIN2 and Endo-BIN3 towards pyridylaminated N-glycans, and found that the two Endo-BIN enzymes showed similar substrate specificity, preferring bi-antennary complex-type N-glycans with galactose or α2,6-linked sialic acid residues at the non-reducing ends. Endo-BIN2 and Endo-BIN3 were also able to hydrolyze multi-branched complex-type N-glycans. SDS-PAGE analysis revealed that all Endo-BIN enzymes were capable of releasing complex-type N-glycans from glycoproteins such as rituximab, transferrin, and fetuin. We expect that B. intestinihominis possesses ENGases to facilitate the utilization of complex-type N-glycans from host cells. These findings will have applications in N-glycan remodeling of glycoproteins and the development of pharmaceuticals.
Collapse
Affiliation(s)
- Kanako Doi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Mitani
- Fushimi Pharmaceutical Co. Ltd., Marugame, Kagawa 763-8605, Japan
| | | | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Ishii N, Muto H, Nagata M, Sano K, Sato I, Iino K, Matsuzaki Y, Katoh T, Yamamoto K, Matsuo I. A fluorogenic probe for core-fucosylated glycan-preferred ENGase. Carbohydr Res 2023; 523:108724. [PMID: 36435009 DOI: 10.1016/j.carres.2022.108724] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
A fluorescence-quenching-based assay system to determine the hydrolytic activity of endo-β-N-acetylglucosaminidases (ENGases), which act on the innermost N-acetylglucosamine (GlcNAc) residue of the chitobiose segment of core-fucosylated N-glycans, was constructed using a dual-labeled fluorescent probe with a hexasaccharide structure. The fluorogenic probe was evaluated using a variety of ENGases, including Endo-M W251N mutant, Endo-F3, and Endo-S, which recognize core fucosylated N-glycans. The occurrence of a hydrolysis reaction was detected by observing an increased fluorescence intensity, ultimately allowing the ENGase activities to be easily and quantitatively evaluated, with the exception of Endo-S. The obtained results clearly indicated the substrate specificities of the examined ENGases.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Hiroshi Muto
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan; Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 3-5-1, Nihonbashi-honcho, Tokyo, 103-8426, Japan
| | - Mitsuo Nagata
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Itsuki Sato
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kenta Iino
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd, 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Yuji Matsuzaki
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd, 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|