1
|
Papazoglou DP, Hobbs L, Sun Y, Neidhard-Doll A. In Vitro Proliferation of MG-63 Cells in Additively Manufactured Ti-6Al-4V Biomimetic Lattice Structures with Varying Strut Geometry and Porosity. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4608. [PMID: 39336349 PMCID: PMC11433508 DOI: 10.3390/ma17184608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Lattice structures have demonstrated the ability to provide secondary stability in orthopedic implants by promoting internal bone growth. In response to the growing prevalence of lattices in orthopedic design, we investigated the effects of porosity and unit cell geometry in additively manufactured Ti-6Al-4V biomimetic lattice structures on the osteogenesis of human MG-63 osteoblastic cell lines in vitro. We analyzed glucose consumption, alkaline phosphatase (ALP) concentration, and end-of-culture cell count as markers for osteogenic growth. Two different strut geometries were utilized (cubic and body-centered cubic), along with four different pore sizes (400, 500, 600, and 900 µm, representing 40-90% porosity in a 10 mm cube), in addition to a solid specimen. Structural characterization was performed using scanning electron microscopy. The results indicated that lattices with a 900 µm pore size exhibited the highest glucose consumption, the greatest change in ALP activity, and the highest cell count when compared to other pore sizes. Cubic 900 µm lattice structures outperformed other specimens in facilitating the maturation of viable MG-63 cells from the formation to the mineralization phase of bone remodeling, offering the most promise for osseointegration in additively manufactured titanium implants in the future. However, irrespective of a particular pore size or unit cell geometry, it was found that all the lattices were capable of promoting osteogenic growth due to surface roughness in the printed parts.
Collapse
Affiliation(s)
- Dimitri P Papazoglou
- Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA
| | - Laura Hobbs
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Yvonne Sun
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | - Amy Neidhard-Doll
- Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
2
|
Tanzli E, Kozior T, Hajnys J, Mesicek J, Brockhagen B, Grothe T, Ehrmann A. Improved cell growth on additively manufactured Ti64 substrates with varying porosity and nanofibrous coating. Heliyon 2024; 10:e25576. [PMID: 38356578 PMCID: PMC10865313 DOI: 10.1016/j.heliyon.2024.e25576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
3T3 Swiss albino mouse cells are often used in biotechnological applications. These cells can grow adherently on suitable surfaces. In our study, they were grown on different titanium substrates, comparing commercially available titanium sheets of grade 1 and grade 2, respectively, with Ti64 which was 3D printed with different porosity in order to identify potential substitutes for common well-plates, which could - in case of 3D printed substrates - be produced in various shapes and dimensions and thus broaden the range of substrates for cell growth in biotechnology and tissue engineering. In addition, thin layers of poly(acrylonitrile) (PAN) nanofibers were electrospun on these substrates to add a nanostructure. The common titanium sheets showed lower cell cover factors than common well plates, which could not be improved by the thin nanofibrous coating. However, the Ti sheets with nanofiber mat coatings showed higher cell adhesion and proliferation than pure PAN nanofiber mats. The 3D printed Ti64 substrates prepared by laser metal fusion, on the other hand, enabled significantly higher proliferation of (66 ± 8)% cover factor after three days of cell growth than well plates which are usually applied as the gold standard for cell cultivation ((48 ± 11)% cover factor under identical conditions). Especially the Ti64 samples with higher porosity showed high cell adhesion and proliferation. Our study suggests investigating such porous Ti64 samples further as a potential future optimum for cell adhesion and proliferation.
Collapse
Affiliation(s)
- Ewin Tanzli
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619, Bielefeld, Germany
| | - Tomasz Kozior
- Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 25-314, Kielce, Poland
| | - Jiri Hajnys
- Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, 708 00, Ostrava Poruba, Czech Republic
| | - Jakub Mesicek
- Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, 708 00, Ostrava Poruba, Czech Republic
| | - Bennet Brockhagen
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619, Bielefeld, Germany
| | - Timo Grothe
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619, Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619, Bielefeld, Germany
| |
Collapse
|
3
|
Liu M, Chu W, Guo T, Zeng X, Shangguan Y, He F, Liang X. Challenges of Cell Counting in Cell Therapy Products. Cell Transplant 2024; 33:9636897241293628. [PMID: 39462979 PMCID: PMC11520012 DOI: 10.1177/09636897241293628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Cell counting is a common and fundamental cell measurement technique that plays a crucial role in the development and quality control of cell therapy products. However, accurate and reliable cell counting can be challenging owing to the complexity of cell preparations, diverse counting purposes, and various counting methods. This review summarizes the challenges encountered in cell counting for cell therapy products and provides strategies to improve the cell counting accuracy, thereby guiding the counting process and ensuring the quality of cell therapy products.
Collapse
Affiliation(s)
- Muyun Liu
- National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, People’s Republic of China
- Shenzhen Kenuo Medical Laboratory, Shenzhen, People’s Republic of China
| | - Wanglong Chu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Tao Guo
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Xiuping Zeng
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Yan Shangguan
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Fangtao He
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| |
Collapse
|
4
|
MacDonald MA, Nöbel M, Roche Recinos D, Martínez VS, Schulz BL, Howard CB, Baker K, Shave E, Lee YY, Marcellin E, Mahler S, Nielsen LK, Munro T. Perfusion culture of Chinese Hamster Ovary cells for bioprocessing applications. Crit Rev Biotechnol 2021; 42:1099-1115. [PMID: 34844499 DOI: 10.1080/07388551.2021.1998821] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history. Driven by high volumetric titers and a small footprint, perfusion-based bioprocess research has regained an interest from academia and industry. The recent pandemic has further highlighted the need for such intensified biomanufacturing options. In this review, we outline the technical history of research in this field as it applies to biologics production in CHO cells. We demonstrate a number of emerging trends in the literature and corroborate these with underlying drivers in the commercial space. From these trends, we speculate that the future of perfusion bioprocesses is bright and that the fields of media optimization, continuous processing, and cell line engineering hold the greatest potential. Aligning in its continuous setup with the demands for Industry 4.0, perfusion biomanufacturing is likely to be a hot topic in the years to come.
Collapse
Affiliation(s)
- Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Matthias Nöbel
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,CSL Limited, Parkville, Melbourne, Australia
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Benjamin L Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Christopher B Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | | | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Lars Keld Nielsen
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trent Munro
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,National Biologics Facility, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
5
|
Araújo R, Carneiro TJ, Marinho P, da Costa MM, Roque A, da Cruz E Silva OAB, Fernandes MH, Vilarinho PM, Gil AM. NMR metabolomics to study the metabolic response of human osteoblasts to non-poled and poled poly (L-lactic) acid. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:919-933. [PMID: 31058384 DOI: 10.1002/mrc.4883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Untargeted nuclear magnetic resonance (NMR) metabolomics was employed, for the first time to our knowledge, to characterize the metabolome of human osteoblast (HOb) cells and extracts in the presence of non-poled or negatively poled poly-L-lactic acid (PLLA). The metabolic response of these cells to this polymer, extensively used in bone regeneration strategies, may potentially translate into useful markers indicative of in vivo biomaterial performance. We present preliminary results of multivariate and univariate analysis of NMR spectra, which have shown the complementarity of lysed cells and extracts in terms of information on cell metabolome, and unveil that, irrespective of poling state, PLLA-grown cells seem to experience enhanced oxidative stress and activated energy metabolism, at the cost of storage lipids and glucose. Possible changes in protein and nucleic acid metabolisms were also suggested, as well as enhanced membrane biosynthesis. Therefore, the presence of PLLA seems to trigger cell catabolism and anti-oxidative protective mechanisms in HOb cells, while directing them towards cellular growth. This was not sufficient, however, to lead to a visible cell proliferation enhancement in the presence of PLLA, although a qualitative tendency for negatively poled PLLA to be more effective in sustaining cell growth than non-poled PLLA was suggested. These preliminary results indicate the potential of NMR metabolomics in enlightening cell metabolism in response to biomaterials and their properties, justifying further studies of the fine effects of poled PLLA on these and other cells of significance in tissue regeneration strategies.
Collapse
Affiliation(s)
- Rita Araújo
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Tatiana J Carneiro
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Paula Marinho
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Marisa Maltez da Costa
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Ana Roque
- Department of Medical Sciences, iBIMED-Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, iBIMED-Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Maria Helena Fernandes
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Paula M Vilarinho
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
McCarron A, Donnelley M, McIntyre C, Parsons D. Transient Lentiviral Vector Production Using a Packed-Bed Bioreactor System. Hum Gene Ther Methods 2019; 30:93-101. [DOI: 10.1089/hgtb.2019.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alexandra McCarron
- Adelaide Medical School, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
- Respiratory and Sleep Medicine, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
| | - Martin Donnelley
- Adelaide Medical School, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
- Respiratory and Sleep Medicine, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
| | - Chantelle McIntyre
- Adelaide Medical School, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
| | - David Parsons
- Adelaide Medical School, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia
- Respiratory and Sleep Medicine, SA Pathology, Women's and Children's Hospital, Adelaide, Australia
| |
Collapse
|
7
|
Patil R, Walther J. Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:277-322. [PMID: 28265699 DOI: 10.1007/10_2016_58] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Collapse
Affiliation(s)
- Rohan Patil
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA
| | - Jason Walther
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA.
| |
Collapse
|
8
|
Chen KD, Wu XX, Yu DS, Ou HL, Li YH, Zhou YQ, Li LJ. Process optimization for the rapid production of adenoviral vectors for clinical trials in a disposable bioreactor system. Appl Microbiol Biotechnol 2018; 102:6469-6477. [PMID: 29858958 DOI: 10.1007/s00253-018-9091-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
Abstract
Recombinant adenoviral (Ad) vectors are highly efficient gene transfer vectors widely used in vaccine development and immunotherapy. To promote the industrial application of Ad vectors, studies focusing on reducing the cost of manufacturing, shortening the preclinical research period, and improving the quality of products are needed. Here, we describe a highly efficient and economical process for producing Ad vector in a novel, single-use bioreactor system suitable for clinical trials. A mini-bioreactor was used for parameter optimization and development of medium replacement protocols for Ad5-GFP production before scale-up. HEK293 cell culture and virus infection were monitored in a disposable AmProtein Current Perfusion Bioreactor and Bioflo310 bioreactor using optimized parameters and medium replacement protocols. The total cell number increased from 2.0 × 109 to 3.2 × 1010 after 6 days of culture. The total number of viral particles obtained in a single batch was 1.2 × 1015. These results demonstrate the efficiency and suitability of this system for Ad vector production for research and GMP applications.
Collapse
Affiliation(s)
- Ke-Da Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dong-Shan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hui-Lin Ou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yan-Hua Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yu-Qing Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovative Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Simmons AD, Sikavitsas VI. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells. Ann Biomed Eng 2017; 46:37-47. [DOI: 10.1007/s10439-017-1937-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/22/2017] [Indexed: 12/24/2022]
|
10
|
Simmons AD, Williams C, Degoix A, Sikavitsas VI. Sensing metabolites for the monitoring of tissue engineered construct cellularity in perfusion bioreactors. Biosens Bioelectron 2016; 90:443-449. [PMID: 27825527 DOI: 10.1016/j.bios.2016.09.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
As the field of tissue engineering progresses ever-further toward realizing clinical implementation of tissue-engineered constructs for wound regeneration, perhaps the most significant hurdle remains the establishment of non-destructive means for real-time in vitro assessment. In order to address this barrier, the study presented herein established the viability of the development of correlations between metabolic rates (specifically oxygen uptake, glucose consumption, and lactate production) and the cellularity of tissue-engineered cultures comprised of rat mesenchymal stem cells dynamically seeded on 85% porous nonwoven spunbonded poly(l-lactic acid) fiber mesh scaffolds. Said scaffolds were cultured for up to 21 days in a flow perfusion bioreactor system wherein α-MEM (supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic) was perfused directly through each scaffold at low flow rates (~0.15mL/min). Metabolite measurements were obtained intermittently through the use of a fiber-optic probe (for the case of oxygen) and biochemical assays (for glucose and lactate). Such measurements were subsequently correlated with cellularity data obtained utilizing current-standard destructive means. The resulting correlations, all exhibiting high R2 values, serve as a proof-on-concept for the use of metabolic data for the determination of scaffold cellularity in real-time non-destructively. This study can be easily adapted for use with various cell types, media formulations, and potentially different bioreactor systems. Implementation of more advanced in situ measurement devices could be easily accommodated to allow for true real-time, on-line metabolite monitoring and cellularity estimation.
Collapse
Affiliation(s)
- Aaron D Simmons
- School of Chemical, Biological & Materials Engineering, Sarkeys Energy Center, 100 E Boyd Room T-301, Norman, OK 73019, USA
| | - Cortes Williams
- Stephenson School of Biomedical Engineering, Carson Engineering Center, 202 W Boyd St. Room 107, Norman, OK 73019, USA
| | - Antoine Degoix
- School of Chemical, Biological & Materials Engineering, Sarkeys Energy Center, 100 E Boyd Room T-301, Norman, OK 73019, USA
| | - Vassilios I Sikavitsas
- School of Chemical, Biological & Materials Engineering, Sarkeys Energy Center, 100 E Boyd Room T-301, Norman, OK 73019, USA; Stephenson School of Biomedical Engineering, Carson Engineering Center, 202 W Boyd St. Room 107, Norman, OK 73019, USA.
| |
Collapse
|
11
|
Lee TY, Lin HH, Chen CL, Hwang SM, Tseng CP. Inhibitory Effect of Excessive Glucose on Its Biochemical Pathway and the Growth of Chinese Hamster Ovary (CHO) Cells. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2014.977908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
|
13
|
Lambrechts T, Papantoniou I, Sonnaert M, Schrooten J, Aerts JM. Model-based cell number quantification using online single-oxygen sensor data for tissue engineering perfusion bioreactors. Biotechnol Bioeng 2014; 111:1982-92. [PMID: 24771348 DOI: 10.1002/bit.25274] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 01/31/2023]
Abstract
Online and non-invasive quantification of critical tissue engineering (TE) construct quality attributes in TE bioreactors is indispensable for the cost-effective up-scaling and automation of cellular construct manufacturing. However, appropriate monitoring techniques for cellular constructs in bioreactors are still lacking. This study presents a generic and robust approach to determine cell number and metabolic activity of cell-based TE constructs in perfusion bioreactors based on single oxygen sensor data in dynamic perfusion conditions. A data-based mechanistic modeling technique was used that is able to correlate the number of cells within the scaffold (R(2) = 0.80) and the metabolic activity of the cells (R(2) = 0.82) to the dynamics of the oxygen response to step changes in the perfusion rate. This generic non-destructive measurement technique is effective for a large range of cells, from as low as 1.0 × 10(5) cells to potentially multiple millions of cells, and can open-up new possibilities for effective bioprocess monitoring.
Collapse
Affiliation(s)
- T Lambrechts
- Division M3-BIORES: Measure, Model & Manage Bioresponses, KU Leuven, Heverlee, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
14
|
Production of influenza H1N1 vaccine from MDCK cells using a novel disposable packed-bed bioreactor. Appl Microbiol Biotechnol 2012; 97:1063-70. [PMID: 22945265 DOI: 10.1007/s00253-012-4375-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/11/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
A process for human influenza H1N1 virus vaccine production from Madin-Darby canine kidney (MDCK) cells using a novel packed-bed bioreactor is described in this report. The mini-bioreactor was used to study the relationship between cell density and glucose consumption rate and to optimize the infection parameters of the influenza H1N1 virus (A/New Caledonia/20/99). The MDCK cell culture and virus infection were then monitored in a disposable perfusion bioreactor (AmProtein Current Perfusion Bioreactor) with proportional-integral-derivative control of pH, dissolved O(2) (DO), agitation, and temperature. During 6 days of culture, the total cell number increased from 2.0 × 10(9) to 3.2 × 10(10) cells. The maximum virus titers of 768 hemagglutinin units/100 μL and 7.8 × 10(7) 50 % tissue culture infectious doses/mL were obtained 3 days after infection. These results demonstrate that using a disposable perfusion bioreactor for large-scale cultivation of MDCK cells, which allows for the control of DO, pH, and other conditions, is a convenient and stable platform for industrial-scale production of influenza vaccines.
Collapse
|
15
|
Effective enrichment of cholangiocarcinoma secretomes using the hollow fiber bioreactor culture system. Talanta 2012; 99:294-301. [DOI: 10.1016/j.talanta.2012.05.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/20/2022]
|
16
|
Abbasalizadeh S, Larijani MR, Samadian A, Baharvand H. Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor. Tissue Eng Part C Methods 2012; 18:831-51. [PMID: 22559864 DOI: 10.1089/ten.tec.2012.0161] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Current protocols for the scalable suspension culture of human pluripotent stem cells (hPSCs) are limited by multiple biological and technical challenges that need to be addressed before their use in clinical trials. To overcome these challenges, we have developed a novel bioprocess platform for large-scale expansion of human embryonic and induced pluripotent stem cell lines as three-dimensional size-controlled aggregates. This novel bioprocess utilizes the stepwise optimization of both static and dynamic suspension culture conditions. After screening eight xeno-free media in static suspension culture and optimizing single-cell passaging in dynamic conditions, the scale-up from a static to a dynamic suspension culture in the stirred bioreactor resulted in a two- to threefold improvement in expansion rates, as measured by cell counts and metabolic activity. We successfully produced size-specific aggregates through optimization of bioreactor hydrodynamic conditions by using combinations of different agitation rates and shear protectant concentrations. The expansion rates were further improved by controlling oxygen concentration at normoxic conditions, and reached a maximum eightfold increase for both types of hPSCs. Subsequently, we demonstrated a simple and rapid scale-up strategy that produced clinically relevant numbers of hPSCs (∼2×10(9) cells) over a 1-month period by the direct transfer of "suspension-adapted frozen cells" to a stirred suspension bioreactor. We omitted the required preadaptation passages in the static suspension culture. The cells underwent proliferation over multiple passages in the demonstrated xeno-free dynamic suspension culture while maintaining their self-renewal capabilities, as determined by marker expressions and in vitro spontaneous differentiation. In conclusion, suspension culture protocols of hPSCs could be used to mass produce homogenous and pluripotent undifferentiated cells by identification and optimization of key bioprocess parameters that are complemented by a simple and rapid scale-up platform.
Collapse
Affiliation(s)
- Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | |
Collapse
|
17
|
Savina IN, Dainiak M, Jungvid H, Mikhalovsky SV, Galaev IY. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 20:1781-95. [PMID: 19723441 DOI: 10.1163/156856208x386390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macroporous hydrogels (MHs), cryogels, are a new type of biomaterials for tissue engineering that can be produced from any natural or synthetic polymer that forms a gel. Synthetic MHs are rendered bioactive by surface or bulk modifications with extracellular matrix components. In this study, cell response to the architecture of protein ligands, bovine type-I collagen (CG) and human fibrinogen (Fg), immobilised using different methods on poly(2-hydroxyethyl methacrylate) (pHEMA) macroporous hydrogels (MHs) was analysed. Bulk modification was performed by cross-linking cryo-co-polymerisation of HEMA and poly(ethylene glycol)diacrylate (PEGA) in the presence of proteins (CG/pHEMA and Fg/pHEMA MHs). The polymer surface was modified by covalent immobilisation of the proteins to the active epoxy (ep) groups present on pHEMA after hydrogel fabrication (CG-epHEMA and Fg-epHEMA MHs). The concentration of proteins in protein/pHEMA and protein-epHEMA MHs was 80-85 and 130-140 mug/ml hydrogel, respectively. It was demonstrated by immunostaining and confocal laser scanning microscopy that bulk modification resulted in spreading of CG in the polymer matrix and spot-like distribution of Fg. On the contrary, surface modification resulted in spot-like distribution of CG and uniform spreading of Fg, which evenly coated the surface. Proliferation rate of fibroblasts was higher on MHs with even distribution of the ligands, i.e., on Fg-epHEMA and CG/pHEMA. After 30 days of growth, fibroblasts formed several monolayers and deposited extracellular matrix filling the pores of these MHs. The best result in terms of cell proliferation was obtained on Fg-epHEMA. The ligands displayed on surface of these scaffolds were in native conformation, while in bulk-modified CG/pHEMA MHs most of the proteins were buried inside the polymer matrix and were less accessible for interactions with specific antibodies and cells. The method used for MH modification with bioligands strongly affects spatial distribution, density and conformation of the ligand on the scaffold surface, which, in turn, influence cell-surface interactions. The optimal type of modification varies depending on intrinsic properties of proteins and MHs.
Collapse
Affiliation(s)
- Irina N Savina
- School of Pharmacy and Biomolecular Sciences, Brighton University, Brighton, UK
| | | | | | | | | |
Collapse
|
18
|
Constitutive release of cytokines by human oral keratinocytes in an organotypic culture. J Oral Maxillofac Surg 2009; 67:1256-64. [PMID: 19446213 DOI: 10.1016/j.joms.2009.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 02/05/2009] [Indexed: 11/23/2022]
Abstract
PURPOSE The Food and Drug Administration requires an accurate determination of the dose and potency of tissue-engineered or combination products as is required for drugs. This needs to be done as a rapid, quantitative, and noninvasive measurement of biologic function/activity in a way so as not to perturb the tissue-engineered product being developed. The aim of this study was to correlate constitutive release of cytokine(s) from unstimulated cells, at different stages of development, within a 3-dimensional (3D) organotypic ex vivo produced oral mucosa equivalent (EVPOME) to be used for intraoral grafting, with oral keratinocyte cell viability of the EVPOME. MATERIALS AND METHODS Tissue culture medium was assayed with an enzyme-linked immunosorbent assay from monolayer culture of oral keratinocytes and a 3D EVPOME to determine the constitutive release of interleukin (IL) 1alpha, IL-6, IL-8, and vascular endothelial growth factor (VEGF). VEGF messenger ribonucleic acid expression by oral keratinocytes within the 3D EVPOME was detected by in situ hybridization at days 4, 7, and 11. The number of viable oral keratinocytes within the EVPOME was extrapolated from VEGF release by use of a modified MTT assay. RESULTS Both VEGF release level and the number of viable cells in the monolayer cultures and 3D EVPOME as measured by MTT assay significantly increased in a time-dependent manner (P < .001, r = 0.743). CONCLUSION These results suggest that the increasing detectable levels of VEGF associated with the increasing number of viable cells in the EVPOME may provide a useful noninvasive/nondestructive means of assessing both cellular viability (dose) and biologic function/activity (potency) of a combination cell-based device such as the EVPOME.
Collapse
|