1
|
Artificial chaperones: From materials designs to applications. Biomaterials 2020; 254:120150. [DOI: 10.1016/j.biomaterials.2020.120150] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
2
|
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 2015; 14:41. [PMID: 25889252 PMCID: PMC4379949 DOI: 10.1186/s12934-015-0222-8] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.
Collapse
Affiliation(s)
- Anupam Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vaibhav Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Arun Kumar Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Surinder Mohan Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
3
|
Niu J, Zhu Y, Xie Y, Song L, Shi L, Lan J, Liu B, Li X, Huang Z. Solid-phase polyethylene glycol conjugation using hydrophobic interaction chromatography. J Chromatogr A 2013; 1327:66-72. [PMID: 24411087 DOI: 10.1016/j.chroma.2013.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/11/2013] [Accepted: 12/14/2013] [Indexed: 02/04/2023]
Abstract
PEGylation is a widely applied approach to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. The current solution-phase PEGylation protocols often suffer from poor yield of homogeneously PEGylated bioactive products and hence fall short of being commercially attractive. To improve upon these techniques, here we developed a novel, solid-phase PEGylation methodology using a hydrophobic interaction chromatography (HIC) resin. Two variations of the HIC-based PEGylation are described that are tailored towards conjugation of proteins with hydrophobicity index above (lysozyme) and below (fibroblast growth factor 1, FGF-1) that of the mPEG-butyraldehyde (mPEG) chain used. In the case of lysozyme, the protein was first immobilized on the HIC, and the HIC-bound protein was then conjugated by passing over the column. In the case of FGF-1, the mPEG solution was first immobilized on the HIC, and the FGF-1 solution was then passed through the column. Circular dichroism (CD) spectroscopy demonstrated HIC-based PEGylation almost retained the secondary structures of proteins. Bioactivity assay showed that the recovery of activity of HIC-based PEGylated rhFGF-1 (i.e. 92%) was higher than that of liquid-phase PEGylated rhFGF-1 (i.e. 61%), while HIC-based PEGylated lysozyme showed the same activity recovery (i.e. 7%) as the liquid-phase PEGylated form. For specific proteins, the HIC-based solid-phase PEGylation maybe offer a more promising alternative than the current PEGylation methods and is expected to have a major impact in the area of protein-based therapeutics.
Collapse
Affiliation(s)
- Jianlou Niu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Yanlin Zhu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yaoyao Xie
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Lintao Song
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Lu Shi
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Junjie Lan
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bailin Liu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Zhifeng Huang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
4
|
Hussien R, Rihn BH, Eidi H, Ronzani C, Joubert O, Ferrari L, Vazquez O, Kaufer D, Brooks GA. Unique growth pattern of human mammary epithelial cells induced by polymeric nanoparticles. Physiol Rep 2013; 1:e00027. [PMID: 24303146 PMCID: PMC3831889 DOI: 10.1002/phy2.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/24/2013] [Accepted: 06/11/2013] [Indexed: 11/09/2022] Open
Abstract
Due to their unique properties, engineered nanoparticles (NPs) have found broad use in industry, technology, and medicine, including as a vehicle for drug delivery. However, the understanding of NPs' interaction with different types of mammalian cells lags significantly behind their increasing adoption in drug delivery. In this study, we show unique responses of human epithelial breast cells when exposed to polymeric Eudragit® RS NPs (ENPs) for 1-3 days. Cells displayed dose-dependent increases in metabolic activity and growth, but lower proliferation rates, than control cells, as evidenced in tetrazolium salt (WST-1) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Those effects did not affect cell death or mitochondrial fragmentation. We attribute the increase in metabolic activity and growth of cells culture with ENPs to three factors: (1) high affinity of proteins present in the serum for ENPs, (2) adhesion of ENPs to cells, and (3) activation of proliferation and growth pathways. The proteins and genes responsible for stimulating cell adhesion and growth were identified by mass spectrometry and Microarray analyses. We demonstrate a novel property of ENPs, which act to increase cell metabolic activity and growth and organize epithelial cells in the epithelium as determined by Microarray analysis.
Collapse
Affiliation(s)
- Rajaa Hussien
- Department of Integrative Biology, University of California Berkeley, California, 94720-3140
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yamaguchi S, Yamamoto E, Mannen T, Nagamune T, Nagamune T. Protein refolding using chemical refolding additives. Biotechnol J 2012; 8:17-31. [DOI: 10.1002/biot.201200025] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/13/2012] [Accepted: 07/26/2012] [Indexed: 12/14/2022]
|
6
|
Gautam S, Dubey P, Varadarajan R, Gupta MN. Role of smart polymers in protein purification and refolding. Bioengineered 2012; 3:286-8. [PMID: 22892577 DOI: 10.4161/bioe.21372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Affinity precipitation is a non-chromatographic method which is useful for purification and refolding of proteins. Quite often, a stimuli-sensitive polymer can be identified which selectively binds to the desired protein. For separation, the protein can be recovered from the precipitate of the protein-smart polymer complex. In case of a refolding experiment, binding of the solubilized protein (in its denatured form) with the polymer leads to the refolding of the protein.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | | | | |
Collapse
|
7
|
Ye C, Ilghari D, Niu J, Xie Y, Wang Y, Wang C, Li X, Liu B, Huang Z. A comprehensive structure–function analysis shed a new light on molecular mechanism by which a novel smart copolymer, NY-3-1, assists protein refolding. J Biotechnol 2012; 160:169-75. [DOI: 10.1016/j.jbiotec.2012.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022]
|
8
|
Chemical assistance in refolding of bacterial inclusion bodies. Biochem Res Int 2011; 2011:631607. [PMID: 21822494 PMCID: PMC3148444 DOI: 10.1155/2011/631607] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins but insoluble expression of heterologous proteins is a major bottleneck in production of recombinant proteins in E. coli. In vitro refolding of inclusion body into proteins with native conformations is a solution for this problem but there is a need for optimization of condition for each protein specifically. Several approaches have been described for in vitro refolding; most of them involve the use of additives for assisting correct folding. Cosolutes play a major role in refolding process and can be classified according to their function as aggregation suppressors and folding enhancers. This paper presents a review of additives that are used in refolding process of insoluble recombinant proteins in small scale and industrial processes.
Collapse
|
9
|
A rational design for hepatitis B virus X protein refolding and bioprocess development guided by second virial coefficient studies. Appl Microbiol Biotechnol 2011; 90:181-91. [DOI: 10.1007/s00253-010-3058-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/28/2010] [Accepted: 12/03/2010] [Indexed: 10/18/2022]
|
10
|
Ding Y, Chuan YP, He L, Middelberg AP. Modeling the competition between aggregation and self-assembly during virus-like particle processing. Biotechnol Bioeng 2010; 107:550-60. [DOI: 10.1002/bit.22821] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|