1
|
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds. Molecules 2023; 28:molecules28031418. [PMID: 36771084 PMCID: PMC9919917 DOI: 10.3390/molecules28031418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pyruvate is a hub of various endogenous metabolic pathways, including glycolysis, TCA cycle, amino acid, and fatty acid biosynthesis. It has also been used as a precursor for pyruvate-derived compounds such as acetoin, 2,3-butanediol (2,3-BD), butanol, butyrate, and L-alanine biosynthesis. Pyruvate and derivatives are widely utilized in food, pharmaceuticals, pesticides, feed additives, and bioenergy industries. However, compounds such as pyruvate, acetoin, and butanol are often chemically synthesized from fossil feedstocks, resulting in declining fossil fuels and increasing environmental pollution. Metabolic engineering is a powerful tool for producing eco-friendly chemicals from renewable biomass resources through microbial fermentation. Here, we review and systematically summarize recent advances in the biosynthesis pathways, regulatory mechanisms, and metabolic engineering strategies for pyruvate and derivatives. Furthermore, the establishment of sustainable industrial synthesis platforms based on alternative substrates and new tools to produce these compounds is elaborated. Finally, we discuss the potential difficulties in the current metabolic engineering of pyruvate and derivatives and promising strategies for constructing efficient producers.
Collapse
|
2
|
Lu Q, Shan X, Zeng W, Zhou J. Production of pyruvic acid with Candida glabrata using self-fermenting spent yeast cell dry powder as a seed nitrogen source. BIORESOUR BIOPROCESS 2022; 9:109. [PMID: 38647593 PMCID: PMC10991669 DOI: 10.1186/s40643-022-00593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
Pyruvic acid is an important organic acid and a key industrial raw material. It is widely used in the chemical, agricultural, and food fields. Candida glabrata is the preferred strain for pyruvic acid production. The waste yeast cell for pyruvic acid fermentation with C. glabrata are rich in protein, amino acid, nucleic acid, and vitamins, as potential and cost-effective nitrogen source raw material. In this study, the potential of C. glabrata to produce pyruvic acid using spent yeast cell dry powder was evaluated. When 30 g/L of spray-dried spent yeast cell powder was used as the seed nitrogen source, a high titer of pyruvic acid was obtained. The pyruvic acid production reached 63.4 g/L with a yield of 0.59 g/g in a 5 L bioreactor. After scale-up to a 50 L bioreactor using the fermented spent yeast cell dry powder as a seed nitrogen source, 65.1 g/L of pyruvic acid was harvested, with a yield of 0.61 g/g. This study proposes a promisingapproach for increasing the pyruvic acid titer and reducing the costs.
Collapse
Affiliation(s)
- Qiyuan Lu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
3
|
Xu S, Xu J, Zeng W, Shan X, Zhou J. Efficient biosynthesis of exopolysaccharide in Candida glabrata by a fed-batch culture. Front Bioeng Biotechnol 2022; 10:987796. [PMID: 36118574 PMCID: PMC9478339 DOI: 10.3389/fbioe.2022.987796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides are important natural biomacromolecules. In particular, microbial exopolysaccharides have received much attention. They are produced by a variety of microorganisms, and they are widely used in the food, pharmaceutical, and chemical industries. The Candida glabrata mutant 4-C10, which has the capacity to produce exopolysaccharide, was previously obtained by random mutagenesis. In this study we aimed to further enhance exopolysaccharide production by systemic fermentation optimization. By single factor optimization and orthogonal design optimization in shaking flasks, an optimal fermentation medium composition was obtained. By optimizing agitation speed, aeration rate, and fed-batch fermentation mode, 118.6 g L−1 of exopolysaccharide was obtained by a constant rate feeding fermentation mode, with a glucose yield of 0.62 g g−1 and a productivity of 1.24 g L−1 h−1. Scaling up the established fermentation mode to a 15-L fermenter led to an exopolysaccharide yield of 113.8 g L−1, with a glucose yield of 0.60 g g−1 and a productivity of 1.29 g L−1 h−1.
Collapse
Affiliation(s)
- Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jinke Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
4
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Guo L, Zeng W, Xu S, Zhou J. Fluorescence-activated droplet sorting for enhanced pyruvic acid accumulation by Candida glabrata. BIORESOURCE TECHNOLOGY 2020; 318:124258. [PMID: 33099100 DOI: 10.1016/j.biortech.2020.124258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
One of the goals of metabolic engineering is to engineer strains that can optimally produce target metabolites. However, the current workflow for rational engineering of the metabolic pathway is sometimes time-consuming and labor-intensive. Here, we have established a cost-effective approach for screening for variants secreting metabolites. Different surface display systems were adopted and verified, which anchored pHluorin to the Candida glabrata cell surface to associate pyruvic acid detection with the read out of this reporter. A generalizable simulation approach based on computational fluid dynamics and regularity of generated droplet dimension was presented, which was found to be an efficient design tool to explore microfluidic characteristics or optimization. Finally, a microfluidic platform based on simulation coupled with surface display system was constructed. A mutant exhibiting a 73.6% increase in pyruvic acid production was identified. This ultrahigh-throughput screening pattern offers a practical guide for identifying microbial strains with many traits of interest.
Collapse
Affiliation(s)
- Likun Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1. BIORESOURCE TECHNOLOGY 2020; 295:122248. [PMID: 31627065 DOI: 10.1016/j.biortech.2019.122248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Dissolved oxygen (DO) supply plays essential roles in microbial organic acid production. Candida glabrata, as a dominant strain for producing pyruvic acid, principally converts glucose to pyruvic acid through glycolysis. However, this process relies excessively on high extracellular DO content. In this study, in combination with specific motif analysis of gene promoters, hypoxia-inducible factor 1 (HIF1) was engineered to improve the transcription level of some enzymes related to pyruvic acid synthesis under low DO level and directly led to increased pyruvic acid production and glycolysis efficiency. Moreover, the intracellular stability of HIF1 was further optimized from different aspects to maximize pyruvic acid accumulation. Finally, the pyruvic acid titer in a 5-L batch bioreactor with 10% DO level reached 53.1 g/L. As pyruvic acid is involved in the biosynthesis of various products, these findings suggest that HIF1-enabled regulation method has significant potential for increasing the synthesis of other chemicals in microorganisms.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhanced Pyruvate Production in Candida glabrata by Engineering ATP Futile Cycle System. ACS Synth Biol 2019; 8:787-795. [PMID: 30856339 DOI: 10.1021/acssynbio.8b00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Energy metabolism plays an important role in the growth and central metabolic pathways of cells. Manipulating energy metabolism is an efficient strategy to improve the formation of target products and to understand the effects of altering intracellular energy levels on global metabolic networks. Candida glabrata, as a dominant yeast strain for producing pyruvate, principally converts glucose to pyruvate through the glycolytic pathway. However, this process can be severely inhibited by a high intracellular ATP content. Here, in combination with the physiological characteristics of C. glabrata, efforts have been made to construct an ATP futile cycle system (ATP-FCS) in C. glabrata to decrease the intracellular ATP level without destroying F0F1-ATPase function. ATP-FCS was capable of decreasing the intracellular ATP level by 51.0% in C. glabrata. The decrease in the ATP level directly led to an increased pyruvate production and glycolysis efficiency. Moreover, we further optimized different aspects of the ATP-FCS to maximize pyruvate accumulation. Combining ATP-FCS with further genetic optimization strategies, we achieved a final pyruvate titer of 40.2 g/L, with 4.35 g pyruvate/g dry cell weight and a 0.44 g/g substrate conversion rate in 500 mL flasks, which represented increases of 98.5%, 322.3%, and 160%, respectively, compared with the original strain. Thus, these strategies hold great potential for increasing the synthesis of other organic acids in microbes.
Collapse
|
9
|
Liu M, Cao Z. Regulation of NADH Oxidase Expression via a Thermo-regulated Genetic Switch for Pyruvate Production in Escherichia coli. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0290-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Luo Z, Liu S, Du G, Xu S, Zhou J, Chen J. Enhanced pyruvate production in Candida glabrata
by carrier engineering. Biotechnol Bioeng 2017; 115:473-482. [DOI: 10.1002/bit.26477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Zhengshan Luo
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Song Liu
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; Jiangnan University; Wuxi Jiangsu China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; Jiangnan University; Wuxi Jiangsu China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
11
|
Yang M, Mu T, Zhong W, Olajuyin A, Xing J. Analysis of gluconate metabolism for pyruvate production in engineeredEscherichia colibased on genome-wide transcriptomes. Lett Appl Microbiol 2017; 65:165-172. [DOI: 10.1111/lam.12758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/18/2023]
Affiliation(s)
- M. Yang
- Key Laboratory of Green Process and Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| | - T. Mu
- Key Laboratory of Green Process and Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| | - W. Zhong
- Graduate School of Chinese Academy of Sciences; Beijing China
| | - A.M. Olajuyin
- Graduate School of Chinese Academy of Sciences; Beijing China
| | - J. Xing
- Key Laboratory of Green Process and Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
12
|
Switch on a more efficient pyruvate synthesis pathway based on transcriptome analysis and metabolic evolution. J Biosci Bioeng 2017; 124:523-527. [PMID: 28669527 DOI: 10.1016/j.jbiosc.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/24/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
Due to the decrease of intracellular NADH availability, gluconate metabolism is more conducive to pyruvate production than glucose. Transcriptome analysis revealed that the Entner-Doudoroff (ED) pathway was activated by gluconate in Escherichia coli YP211 (MG1655 ΔldhA ΔpflB Δpta-ackA ΔpoxB Δppc ΔfrdBC). To construct a new pyruvate producing strain with glucose metabolism via ED pathway, the genes ppsA, ptsG, pgi and gnd were deleted sequentially to reduce the demand for PEP and block the Embden-Meyerhor-Parnas pathway and Pentose-Phosphate pathway. After nearly 1000 generations of growth-based selection, the evolved strain YP404 was isolated and the ED pathway was proved to be activated as the primary glycolytic pathway. Comparing with YP211, the pyruvate concentration and yield increased by 59% and 10.1%, respectively. In fed-batch fermentation, the pyruvate concentration reached 83.5 g l-1 with a volumetric productivity of 2.3 g l-1 h-1. This was the first time to produce pyruvate via ED pathway, and prove that this was a more effective way.
Collapse
|
13
|
Zhou S, Ding R, Chen J, Du G, Li H, Zhou J. Obtaining a Panel of Cascade Promoter-5'-UTR Complexes in Escherichia coli. ACS Synth Biol 2017; 6:1065-1075. [PMID: 28252945 DOI: 10.1021/acssynbio.7b00006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A promoter is one of the most important and basic tools used to achieve diverse synthetic biology goals. Escherichia coli is one of the most commonly used model organisms in synthetic biology to produce useful target products and establish complicated regulation networks. During the fine-tuning of metabolic or regulation networks, the limited number of well-characterized inducible promoters has made implementing complicated strategies difficult. In this study, 104 native promoter-5'-UTR complexes (PUTR) from E. coli were screened and characterized based on a series of RNA-seq data. The strength of the 104 PUTRs varied from 0.007% to 4630% of that of the PBAD promoter in the transcriptional level and from 0.1% to 137% in the translational level. To further upregulate gene expression, a series of combinatorial PUTRs and cascade PUTRs were constructed by integrating strong transcriptional promoters with strong translational 5'-UTRs. Finally, two combinatorial PUTRs (PssrA-UTRrpsT and PdnaKJ-UTRrpsT) and two cascade PUTRs (PUTRssrA-PUTRinfC-rplT and PUTRalsRBACE-PUTRinfC-rplT) were identified as having the highest activity, with expression outputs of 170%, 137%, 409%, and 203% of that of the PBAD promoter, respectively. These engineered PUTRs are stable for the expression of different genes, such as the red fluorescence protein gene and the β-galactosidase gene. These results show that the PUTRs characterized and constructed in this study may be useful as a plug-and-play synthetic biology toolbox to achieve complicated metabolic engineering goals in fine-tuning metabolic networks to produce target products.
Collapse
Affiliation(s)
- Shenghu Zhou
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Renpeng Ding
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huazhong Li
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory
of Industrial Biotechnology, Ministry of Education,
School of Biotechnology, and ‡National Engineering Laboratory for Cereal Fermentation
Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019. Appl Microbiol Biotechnol 2017; 101:4447-4458. [DOI: 10.1007/s00253-017-8245-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 12/22/2022]
|
15
|
Yang M, Zhang X. Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis. World J Microbiol Biotechnol 2017; 33:59. [PMID: 28243982 DOI: 10.1007/s11274-016-2202-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
To obtain strain YP211 with a high tendency for accumulating pyruvate, central metabolic pathways were modified in Escherichia coli MG1655. Specifically, seven genes (ldhA, pflB, pta-ackA, poxB, ppc, frdBC) were knocked out sequentially and full pyruvate dehydrogenase was retained. In batch fermentation with M9 medium, pyruvate yield and production rate reached 0.63 g/g glucose and 1.89 g/(1 h), respectively. Meanwhile, the production of acetate, succinate, and other carboxylates was effectively controlled. To understand the physiological observations, we further completed genome-wide transcription analysis of wild-type and YP211. As the acetic acid pathways were blocked, the pathways of convertion of pyruvate to phosphoenol pyruvate and acetyl CoA were enhanced. The transcription of pck, as an alternative gene for ppc, was increased by 2.6 times. So even if gene ppc was inactivated, the tricarboxylic acid pathway was still enhanced in YP211. In order to balance intracellular NADH/NAD+, oxidative phosphorylation and flagellar assembly system were also up-regulated significantly. Biochemical pathways involved in pyruvate accumulation in YP211 (a). Transcriptional differences of genes related to pyruvate metabolism between strain YP211 and E. coli wild-type (b).
Collapse
Affiliation(s)
- Maohua Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Xiang Zhang
- Institute of Agro-food Science and Technology, Shandong Academy of Agricultural Sciences, No. 202 North Industrial Road, Ji'nan, 250100, People's Republic of China
| |
Collapse
|
16
|
|
17
|
Luo Z, Zeng W, Du G, Liu S, Fang F, Zhou J, Chen J. A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis. Bioprocess Biosyst Eng 2017; 40:693-701. [DOI: 10.1007/s00449-017-1734-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/07/2017] [Indexed: 12/30/2022]
|
18
|
Xu N, Ye C, Chen X, Liu J, Liu L, Chen J. Genome Sequencing of the Pyruvate-producing Strain Candida glabrata CCTCC M202019 and Genomic Comparison with Strain CBS138. Sci Rep 2016; 6:34893. [PMID: 27713500 PMCID: PMC5054605 DOI: 10.1038/srep34893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022] Open
Abstract
Candida glabrata CCTCC M202019 as an industrial yeast strain that is widely used to produce α-oxocarboxylic acid. Strain M202019 has been proven to have a higher pyruvate-producing capacity than the reference strain CBS138. To characterize the genotype of the M202019 strain, we generated a draft sequence of its genome, which has a size of 12.1 Mbp and a GC content of 38.47%. Evidence accumulated during genome annotation suggests that strain M202019 has strong capacities for glucose transport and pyruvate biosynthesis, defects in pyruvate catabolism, as well as variations in genes involved in nutrient and dicarboxylic acid transport, oxidative phosphorylation, and other relevant aspects of carbon metabolism, which might promote pyruvate accumulation. In addition to differences in its central carbon metabolism, a genomic analysis revealed genetic differences in adhesion metabolism. Forty-nine adhesin-like proteins of strain M202019 were identified classified into seven subfamilies. Decreased amounts of adhesive proteins, and deletions or changes of low-complexity repeats and functional domains might lead to lower adhesion and reduced pathogenicity. Further virulence experiments validated the biological safety of strain M202019. Analysis of the C. glabrata CCTCC M202019 genome sequence provides useful insights into its genetic context, physical characteristics, and potential metabolic capacity.
Collapse
Affiliation(s)
- Nan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Zhao X, Zou H, Fu J, Chen J, Zhou J, Du G. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae. Yeast 2013; 30:437-47. [PMID: 23996237 DOI: 10.1002/yea.2980] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 11/07/2022] Open
Abstract
Rice wine is a popular traditional alcoholic drink with a long history in China. However, the presence of the potential carcinogen ethyl carbamate (EC) raises a series of food safety concerns. Although the metabolic pathway of urea (the major precusor of EC) has been characterized in Saccharomyces cerevisiae, the regulation of urea accumulation remains unclear, making the efficient elimination of urea difficult. To demonstrate the regulatory mechanisms governing urea accumulation, three key nitrogen sources that can inhibit urea utilization for a commercial S. cerevisiae strain were identified. In addition, regulators of nitrogen catabolite repression (NCR) and target of rapamycin (TOR) pathways were identified as being involved in urea accumulation by real-time quantitative PCR. Based on these results, preferred nitrogen sources were found to repress urea utilization by converting them to glutamine or glutamate. Moreover, the results indicated that the manner of urea metabolism regulation was different for two positive regulators involved in NCR; Gln3p can be retained in the cytoplasm by glutamine, while Gat1p can be retained by glutamine and glutamate. Furthermore, this was confirmed by fluorescence location detection. These new findings provide new targets for eliminating EC and other harmful nitrogen-containing compounds in fermented foods.
Collapse
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Li S, Chen X, Liu L, Chen J. Pyruvate production inCandida glabrata: manipulation and optimization of physiological function. Crit Rev Biotechnol 2013; 36:1-10. [DOI: 10.3109/07388551.2013.811636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Lv Y, Zhao X, Liu L, Du G, Zhou J, Chen J. A simple procedure for protein ubiquitination detection in Saccharomyces cerevisiae: Gap1p as an example. J Microbiol Methods 2013; 94:25-9. [PMID: 23611841 DOI: 10.1016/j.mimet.2013.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/14/2013] [Accepted: 04/14/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yongkun Lv
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|
22
|
Xu N, Liu L, Zou W, Liu J, Hua Q, Chen J. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. ACTA ACUST UNITED AC 2013; 9:205-16. [DOI: 10.1039/c2mb25311a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to d-limonene. Biotechnol Lett 2012; 34:1505-9. [DOI: 10.1007/s10529-012-0931-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
24
|
Qin Y, Johnson CH, Liu L, Chen J. Introduction of heterogeneous NADH reoxidation pathways into Torulopsis glabrata significantly increases pyruvate production efficiency. KOREAN J CHEM ENG 2011. [DOI: 10.1007/s11814-010-0483-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Qin Y, Liu LM, Li CH, Xu S, Chen J. Accelerating glycolytic flux of Torulopsis glabrata CCTCC M202019 at high oxidoreduction potential created using potassium ferricyanide. Biotechnol Prog 2010; 26:1551-7. [PMID: 20886645 DOI: 10.1002/btpr.496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 06/29/2010] [Indexed: 11/06/2022]
Abstract
This study aimed to increase the glycolytic flux of the multivitamin auxotrophic yeast Torulopsis glabrata by redirecting NADH oxidation from oxidative phosphorylation to membrane-bound ferric reductase. We added potassium ferricyanide as electron acceptor to T. glabrata culture broth at 20% dissolved oxygen (DO) concentration, which resulted in: (1) decreases in the NADH content, NADH/NAD(+) ratio, and ATP level of 45.3%, 60.3%, and 15.2%, respectively; (2) high activities of the key glycolytic enzymes hexokinase, phosphofructokinase, and pyruvate kinase, as well as high expression levels of the genes encoding these enzymes; and (3) increases in the specific glucose consumption rate and pyruvate yield of T. glabrata was by 45.5% and 23.1%, respectively. Our results showed that membrane-bound ferric reductase offers an alternative and efficient NADH oxidation pathway at lower DO concentration, which increases the glycolytic flux of T. glabrata.
Collapse
Affiliation(s)
- Yi Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | | | | | | |
Collapse
|
26
|
Zhou J, Liu L, Chen J. Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. J Appl Microbiol 2010; 110:44-53. [PMID: 20880146 DOI: 10.1111/j.1365-2672.2010.04865.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS A major problem in industrial fermentation of organic acids with micro-organisms is to ensure a suitable pH in the culture broth. To circumvent this problem, we investigated the effect of citrate, which is a widely used auxiliary energy co-substrate, on cell growth, organic acid production and pH homeostasis among extracellular environment, cytoplasm and vacuole, in the pyruvic acid production by Candida glabrata CCTCC M202019 under different pH conditions. METHODS AND RESULTS Analysis of intracellular ATP regeneration, cytoplasmic and vacuolar pH values under different culture conditions points towards a relief of stress when C. glabrata is exposed to lower pH, if citrate is added. When 50 mmol l(-1) citrate was added to the culture medium, the intracellular ATP concentrations increased by 20·5% (pH 5·5), 20·4% (pH 5·0) and 39·3% (pH 4·5), and higher pH gradients among the culture broth, cell cytoplasm and vacuoles resulted. As a consequence, the cell growth and pyruvic acid production of C. glabrata CCTCC M202019 were significantly improved under pH 5·0 and 4·5. CONCLUSIONS The acid tolerance of yeast can be improved by enhancing the ATP supply, which helps to maintain higher pH gradients in the system. SIGNIFICANCE AND IMPACT OF THE STUDY The results presented here expand our understanding of the physiological characteristics in eukaryotic micro-organisms under low pH conditions and provide a potential route for the further improvement of organic acids production process by process optimization or metabolic engineering.
Collapse
Affiliation(s)
- J Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | |
Collapse
|
27
|
Zhou J, Liu L, Chen J. Method to purify mitochondrial DNA directly from yeast total DNA. Plasmid 2010; 64:196-9. [PMID: 20600282 DOI: 10.1016/j.plasmid.2010.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 06/13/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
During the purification of total DNA from yeast, both nuclear and mitochondrial DNA (mtDNA) molecules are obtained. Here, we describe a simple enzymatic method using a combination of λ exonuclease and RecJ(f) to obtain pure and intact mtDNA by removing linear DNA from total DNA isolated from yeast cells. The combination of the two enzymes efficiently removed linear DNA from the total DNA of Candida (Torulopsis) glabrata, leaving the mtDNA intact. The purity and integrity of mtDNA was assayed by PCR amplification of ARG1/2/5/8, URA3 and COX1, and by RFLP analysis, respectively. This method can be used to prepare mtDNA for PCR amplification or RFLP analysis without the need for purification of mitochondria by gradient ultracentrifugation or fractional precipitation. The method was also successfully applied to the yeast species Saccharomyces cerevisiae, Candida utilis, Pichia pastoris and Yarrowia lypolytica.
Collapse
Affiliation(s)
- Jingwen Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | |
Collapse
|
28
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. EUKARYOTIC CELL 2010; 9:806-14. [PMID: 20207853 DOI: 10.1128/ec.00349-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetic manipulation of mitochondrial DNA (mtDNA) is the most direct method for investigating mtDNA, but until now, this has been achieved only in the diploid yeast Saccharomyces cerevisiae. In this study, the ATP6 gene on mtDNA of the haploid yeast Candida glabrata (Torulopsis glabrata) was deleted by biolistic transformation of DNA fragments with a recoded ARG8(m) mitochondrial genetic marker, flanked by homologous arms to the ATP6 gene. Transformants were identified by arginine prototrophy. However, in the transformants, the original mtDNA was not lost spontaneously, even under arginine selective pressure. Moreover, the mtDNA transformants selectively lost the transformed mtDNA under aerobic conditions. The mtDNA heteroplasmy in the transformants was characterized by PCR, quantitative PCR, and Southern blotting, showing that the heteroplasmy was relatively stable in the absence of arginine. Aerobic conditions facilitated the loss of the original mtDNA, and anaerobic conditions favored loss of the transformed mtDNA. Moreover, detailed investigations showed that increases in reactive oxygen species in mitochondria lacking ATP6, along with their equal cell division, played important roles in determining the dynamics of heteroplasmy. Based on our analysis of mtDNA heteroplasmy in C. glabrata, we were able to generate homoplasmic Deltaatp6 mtDNA strains.
Collapse
|