1
|
McDonough R, Williams CC, Hartley CJ, French N, Scott C, Lewis DA. Kinetic Model for the Heterogeneous Biocatalytic Reactions Using Tethered Cofactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6685-6693. [PMID: 38525517 DOI: 10.1021/acs.langmuir.3c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Understanding the mechanism of interfacial enzyme kinetics is critical to the development of synthetic biological systems for the production of value-added chemicals. Here, the interfacial kinetics of the catalysis of β-nicotinamide adenine dinucleotide (NAD+)-dependent enzymes acting on NAD+ tethered to the surface of silica nanoparticles (SiNPs) has been investigated using two complementary and supporting kinetic approaches: enzyme excess and reactant (NAD+) excess. Kinetic models developed for these two approaches characterize several critical reaction steps including reversible enzyme adsorption, complexation, decomplexation, and catalysis of the surface-bound enzyme/NAD+ complex. The analysis reveals a concentrating effect resulting in a very high local concentration of enzyme and cofactor on the particle surface, in which the enzyme is saturated by surface-bound NAD, facilitating a rate enhancement of enzyme/NAD+ complexation and catalysis. This resulted in high enzyme efficiency within the tethered NAD+ system compared to that of the free enzyme/NAD+ system, which increases with decreasing enzyme concentration. The role of enzyme adsorption onto solid substrates with a tethered catalyst (such as NAD+) has potential for creating highly efficient flow biocatalytic systems.
Collapse
Affiliation(s)
- Rowan McDonough
- Institute for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | | | | | - Nigel French
- CSIRO Environment, Black Mountain, ACT 2601, Australia
| | - Colin Scott
- CSIRO Environment, Black Mountain, ACT 2601, Australia
| | - David A Lewis
- Institute for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
2
|
Bachosz K, Zdarta J, Bilal M, Meyer AS, Jesionowski T. Enzymatic cofactor regeneration systems: A new perspective on efficiency assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161630. [PMID: 36657682 DOI: 10.1016/j.scitotenv.2023.161630] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, the specificity of enzymatic processes makes them more and more important every year, and their usage on an industrial scale seems to be necessary. Enzymatic cofactors, however, play a crucial part in the prospective applications of enzymes, because they are indispensable for conducting highly effective biocatalytic activities. Due to the relatively high cost of these compounds and their consumption during the processes carried out, it has become crucial to develop systems for cofactor regeneration. Therefore, in this review, an attempt was made to summarize current knowledge on enzymatic regeneration methods, which are characterized by high specificity, non-toxicity and reported to be highly efficient. The regeneration of cofactors, such as nicotinamide dinucleotides, coenzyme A, adenosine 5'-triphosphate and flavin nucleotides, which are necessary for the proper functioning of a large number of enzymes, is discussed, as well as potential directions for further development of these systems are highlighted. This review discusses a range of highly effective cofactor regeneration systems along with the productive synthesis of many useful chemicals, including the simultaneous renewal of several cofactors at the same time. Additionally, the impact of the enzyme immobilization process on improving the stability and the potential for multiple uses of the developed cofactor regeneration systems was also presented. Moreover, an attempt was made to emphasize the importance of the presented research, as well as the identification of research gaps, which mainly result from the lack of available literature on this topic.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland; Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Soltofts Plads 227, DK-2800 Kgs. Lyngby, Denmark.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
3
|
Hernández-Ibáñez N, Gomis-Berenguer A, Montiel V, Ania CO, Iniesta J. Fabrication of a biocathode for formic acid production upon the immobilization of formate dehydrogenase from Candida boidinii on a nanoporous carbon. CHEMOSPHERE 2022; 291:133117. [PMID: 34861253 DOI: 10.1016/j.chemosphere.2021.133117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The immobilization of the non-metallic enzyme formate dehydrogenase from Candida boidinii (CbFDH) into a nanoporous carbon with appropriate pore structure was explored for the bioelectrochemical conversion of CO2 to formic acid (FA). Higher FA production rates were obtained upon immobilization of CbFDH compared to the performance of the enzyme in solution, despite the lower nominal CbFDH to NADH (β-nicotinamide adenine dinucleotide reduced) cofactor ratio and the lower amount of enzyme immobilized. The co-immobilization of the enzyme and a rhodium complex as mediator in the nanoporous carbon allowed the electrochemical regeneration of the cofactor. Preparative electrosynthesis of FA carried out on biocathodes of relatively large dimensions (ca. 3 cm × 2 cm) confirmed the higher production rate of FA for the immobilized enzyme. Furthermore, the incorporation of a Nafion binder in the biocathodes did not modify the immobilization extent of the CbFDH in the carbon support. Coulombic efficiencies close to 46% were obtained for the electrosynthesis carried out at -0.8 V for the biocathodes prepared using the lowest Nafion binder content and the co-immobilized enzyme and rhodium redox mediator. Although these values may yet be improved, they confirm the feasibility of these biocathodes in larger scales (6 cm2) beyond most common electrode dimensions reported in the literature (ca. a few mm2).
Collapse
Affiliation(s)
- Naiara Hernández-Ibáñez
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain
| | | | - Vicente Montiel
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain
| | - Conchi O Ania
- CEMHTI (UPR 3079, CNRS), University of Orléans, 45071, Orléans, France.
| | - Jesús Iniesta
- Physical Chemistry Department and Institute of Electrochemistry, University of Alicante, 03080, Alicante, Spain.
| |
Collapse
|
4
|
Li XY, Xu MQ, Liu H, Zhou Q, Gao J, Zhang YW. Preparation of combined cross-linked enzyme aggregates containing galactitol dehydrogenase and NADH oxidase for L-tagatose synthesis via in situ cofactor regeneration. Bioprocess Biosyst Eng 2021; 45:353-364. [PMID: 34797400 DOI: 10.1007/s00449-021-02665-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
The combined cross-linked enzyme aggregates (combi-CLEAs) containing galactitol dehydrogenase (Gdh) and NADH oxidase (Nox) were prepared for L-tagatose synthesis. To prevent the excess consumption of cofactor, Nox in the combi-CLEAs was used to in situ regenerate NAD+. In the immobilization process, ammonia sulfate and glutaraldehyde were used as the precipitant and cross-linking reagent, respectively. The preparation conditions were optimized as follows: 60% ammonium sulfate, 1:1 (molar ratio) of Gdh to Nox, 20:1 (molar ratio) of protein to glutaraldehyde, and 6 h of cross-linking time at 35 °C. Under these conditions, the activity of the combi-CLEAs was 210 U g-1. The combi-CLEAs exhibited higher thermostability and preserved 51.5% of the original activity after eight cycles of reuses at 45 °C. The combi-CLEAs were utilized for the preparation of L-tagatose without by-products. Therefore, the combi-CLEAs have the industrial potential for the bioconversion of galactitol to L-tagatose.
Collapse
Affiliation(s)
- Xue-Yong Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Meng-Qiu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Hui Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Qiang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jian Gao
- College of Petroleum and Chemical Engineering, Qinzhou, 535100, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
5
|
Abstract
Cascade reactions are the basis of life in nature and are adapted to research and industry in an increasing manner. The focus of this study is the production of the high-value aromatic ester cinnamyl cinnamate, which can be applied in flavors and fragrances. A three-enzyme cascade was established to realize the synthesis, starting from the corresponding aldehyde with in situ cofactor regeneration in a two-phase system. After characterization of the enzymes, a screening with different organic solvents was carried out, whereby xylene was found to be the most suitable solvent for the second phase. The reaction stability of the formate dehydrogenase (FDH) from Candida boidinii is the limiting step during cofactor regeneration. However, the applied enzyme cascade showed an overall yield of 54%. After successful application on lab scale, the limitation by the FDH was overcome by immobilization of the enzymes and an optimized downstream process, transferring the cascade into a miniplant. The upscaling resulted in an increased yield for the esterification, as well as overall yields of 37%.
Collapse
|
6
|
Cofactor F420-Dependent Enzymes: An Under-Explored Resource for Asymmetric Redox Biocatalysis. Catalysts 2019. [DOI: 10.3390/catal9100868] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The asymmetric reduction of enoates, imines and ketones are among the most important reactions in biocatalysis. These reactions are routinely conducted using enzymes that use nicotinamide cofactors as reductants. The deazaflavin cofactor F420 also has electrochemical properties that make it suitable as an alternative to nicotinamide cofactors for use in asymmetric reduction reactions. However, cofactor F420-dependent enzymes remain under-explored as a resource for biocatalysis. This review considers the cofactor F420-dependent enzyme families with the greatest potential for the discovery of new biocatalysts: the flavin/deazaflavin-dependent oxidoreductases (FDORs) and the luciferase-like hydride transferases (LLHTs). The characterized F420-dependent reductions that have the potential for adaptation for biocatalysis are discussed, and the enzymes best suited for use in the reduction of oxidized cofactor F420 to allow cofactor recycling in situ are considered. Further discussed are the recent advances in the production of cofactor F420 and its functional analog FO-5′-phosphate, which remains an impediment to the adoption of this family of enzymes for industrial biocatalytic processes. Finally, the prospects for the use of this cofactor and dependent enzymes as a resource for industrial biocatalysis are discussed.
Collapse
|
7
|
Megarity CF, Siritanaratkul B, Heath RS, Wan L, Morello G, FitzPatrick SR, Booth RL, Sills AJ, Robertson AW, Warner JH, Turner NJ, Armstrong FA. Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Clare F. Megarity
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | | | - Rachel S. Heath
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester Manchester M1 7DN UK
| | - Lei Wan
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Giorgio Morello
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | | | - Rosalind L. Booth
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | - Adam J. Sills
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| | | | - Jamie H. Warner
- Department of MaterialsUniversity of Oxford Parks Road Oxford OX1 3PH UK
| | - Nicholas J. Turner
- Manchester Institute of BiotechnologySchool of ChemistryUniversity of Manchester Manchester M1 7DN UK
| | - Fraser A. Armstrong
- Department of ChemistryUniversity of Oxford South Parks Road Oxford OX1 3QR UK
| |
Collapse
|
8
|
Megarity CF, Siritanaratkul B, Heath RS, Wan L, Morello G, FitzPatrick SR, Booth RL, Sills AJ, Robertson AW, Warner JH, Turner NJ, Armstrong FA. Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angew Chem Int Ed Engl 2019; 58:4948-4952. [PMID: 30633837 PMCID: PMC6491978 DOI: 10.1002/anie.201814370] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/05/2022]
Abstract
In living cells, redox chains rely on nanoconfinement using tiny enclosures, such as the mitochondrial matrix or chloroplast stroma, to concentrate enzymes and limit distances that nicotinamide cofactors and other metabolites must diffuse. In a chemical analogue exploiting this principle, nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+ are cycled rapidly between ferredoxin–NADP+ reductase and a second enzyme—the pairs being juxtaposed within the 5–100 nm scale pores of an indium tin oxide electrode. The resulting electrode material, denoted (FNR+E2)@ITO/support, can drive and exploit a potentially large number of enzyme‐catalysed reactions.
Collapse
Affiliation(s)
- Clare F Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Bhavin Siritanaratkul
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Rachel S Heath
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Lei Wan
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Giorgio Morello
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sarah R FitzPatrick
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Rosalind L Booth
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Adam J Sills
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | | | - Jamie H Warner
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, M1 7DN, UK
| | - Fraser A Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
9
|
|
10
|
Beerens K, Van Overtveldt S, Desmet T. The “epimerring” highlights the potential of carbohydrate epimerases for rare sugar production. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1306738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Koen Beerens
- Unit for Biocatalysis and Enzyme Engineering, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Stevie Van Overtveldt
- Unit for Biocatalysis and Enzyme Engineering, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Tom Desmet
- Unit for Biocatalysis and Enzyme Engineering, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
11
|
Çelik A, Yetiş G, Ay M, Güngör T. Modification of existing antibiotics in the form of precursor prodrugs that can be subsequently activated by nitroreductases of the target pathogen. Bioorg Med Chem Lett 2016; 26:4057-60. [DOI: 10.1016/j.bmcl.2016.06.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|
12
|
Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Jiang W, Lin P, Yang R, Fang B. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii. Appl Microbiol Biotechnol 2016; 100:8425-37. [PMID: 27198726 DOI: 10.1007/s00253-016-7613-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/24/2016] [Accepted: 05/03/2016] [Indexed: 01/02/2023]
Abstract
Formate dehydrogenases (FDHs) are continually used for the cofactor regeneration in biocatalysis and biotransformation with hiring NAD(P)H-dependent oxidoreductases. Major weaknesses of most native FDHs are their low activity and operational stability in the catalytic reaction. In this work, the FDH from Candida boidinii (CboFDH) was engineered in order to gain an enzyme with high activity and better operational stability. Through comparing and analyzing its spatial structure with other FDHs, the catalysis, substrate, and coenzyme binding sites of the CboFDH were identified. To improve its performance, amino acids, which concentrated on the enzyme active site or in the conserved NAD(+) and substrate binding motif, were mutated. The mutant V120S had the highest catalytic efficiency (k cat/K m ) with COONH4 as it enhanced the catalytic velocity (k cat) and k cat/K m 3.48-fold and 1.60-fold, respectively, than that of the wild type. And, the double-mutant V120S-N187D had the highest k cat/K m with NAD(+) as it displayed an approximately 1.50-fold increase in k cat/K m . The mutants showed higher catalytic efficiency than other reported FDHs, suggesting that the mutation has achieved good results. The single and double mutants exhibited higher thermostability than the wild type. The structure-function relationship of single and double mutants was analyzed by homology models and site parsing. Asymmetric synthesis of L-tert-leucine was executed to evaluate the ability of cofactor regeneration of the mutants with about 100 % conversion rates. This work provides a helpful theoretical reference for the evolution of an enzyme in vitro and promotion of the industrial production of chiral compounds, e.g., amino acid and chiral amine.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Peng Lin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Ruonan Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China. .,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China. .,The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
14
|
Binay B, Alagöz D, Yildirim D, Çelik A, Tükel SS. Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH. Beilstein J Org Chem 2016; 12:271-7. [PMID: 26977186 PMCID: PMC4778513 DOI: 10.3762/bjoc.12.29] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/05/2016] [Indexed: 11/23/2022] Open
Abstract
This study aimed to prepare robust immobilized formate dehydrogenase (FDH) preparations which can be used as effective biocatalysts along with functional oxidoreductases, in which in situ regeneration of NADH is required. For this purpose, Candida methylica FDH was covalently immobilized onto Immobead 150 support (FDHI150), Immobead 150 support modified with ethylenediamine and then activated with glutaraldehyde (FDHIGLU), and Immobead 150 support functionalized with aldehyde groups (FDHIALD). The highest immobilization yield and activity yield were obtained as 90% and 132%, respectively when Immobead 150 functionalized with aldehyde groups was used as support. The half-life times (t1/2) of free FDH, FDHI150, FDHIGLU and FDHIALD were calculated as 10.6, 28.9, 22.4 and 38.5 h, respectively at 35 °C. FDHI150, FDHIGLU and FDHIALD retained 69, 38 and 51% of their initial activities, respectively after 10 reuses. The results show that the FDHI150, FDHIGLU and FDHIALD offer feasible potentials for in situ regeneration of NADH.
Collapse
Affiliation(s)
- Barış Binay
- Istanbul AREL University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, Tepekent, Büyükcekmece, Istanbul, Turkey
| | - Dilek Alagöz
- University of Cukurova, Vocational School of Imamoglu, Adana, Turkey
| | - Deniz Yildirim
- University of Cukurova, Vocational School of Ceyhan, Adana, Turkey
| | - Ayhan Çelik
- Gebze Technical University, Department of Chemistry, Gebze, Kocaeli, Turkey
| | - S Seyhan Tükel
- University of Cukurova, Faculty of Arts and Sciences, Department of Chemistry, 01330, Adana, Turkey
| |
Collapse
|
15
|
Peng YQ, Wang SZ, Lan L, Chen W, Fang BS. Resin adsorption application for product separation and catalyst recycling in coupled enzymatic catalysis to produce 1,3-propanediol and dihydroxyacetone for repeated batch. Eng Life Sci 2013. [DOI: 10.1002/elsc.201300012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yi-Qiang Peng
- The Key Laboratory for Industrial Biotechnology of Fujian Higher Education; Hua Qiao University; Xiamen China
| | - Shi-Zhen Wang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Ling Lan
- The Key Laboratory for Industrial Biotechnology of Fujian Higher Education; Hua Qiao University; Xiamen China
| | - Wei Chen
- The Key Laboratory for Industrial Biotechnology of Fujian Higher Education; Hua Qiao University; Xiamen China
| | - Bai-Shan Fang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
- The Key Lab for Chemical Biology of Fujian; Xiamen University; Xiamen China
| |
Collapse
|
16
|
Kumar V, Jahan F, Raghuwanshi S, Mahajan RV, Saxena RK. Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4-chitosan beads and its potential in phenolic acids ester synthesis. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0793-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Netto CG, Toma HE, Andrade LH. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.08.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Netto CG, Nakamura M, Andrade LH, Toma HE. Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Biocatalytic ketone reduction: A green and efficient access to enantiopure alcohols. Biotechnol Adv 2012; 30:1279-88. [PMID: 22079798 DOI: 10.1016/j.biotechadv.2011.10.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/16/2011] [Accepted: 10/24/2011] [Indexed: 11/22/2022]
|
20
|
Rocha-Martín J, Rivas BDL, Muñoz R, Guisán JM, López-Gallego F. Rational Co-Immobilization of Bi-Enzyme Cascades on Porous Supports and their Applications in Bio-Redox Reactions with In Situ Recycling of Soluble Cofactors. ChemCatChem 2012. [DOI: 10.1002/cctc.201200146] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Beerens K, Desmet T, Soetaert W. Enzymes for the biocatalytic production of rare sugars. ACTA ACUST UNITED AC 2012; 39:823-34. [DOI: 10.1007/s10295-012-1089-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/13/2012] [Indexed: 11/24/2022]
Abstract
Abstract
Carbohydrates are much more than just a source of energy as they also mediate a variety of recognition processes that are central to human health. As such, saccharides can be applied in the food and pharmaceutical industries to stimulate our immune system (e.g., prebiotics), to control diabetes (e.g., low-calorie sweeteners), or as building blocks for anticancer and antiviral drugs (e.g., l-nucleosides). Unfortunately, only a small number of all possible monosaccharides are found in nature in sufficient amounts to allow their commercial exploitation. Consequently, so-called rare sugars have to be produced by (bio)chemical processes starting from cheap and widely available substrates. Three enzyme classes that can be used for rare sugar production are keto–aldol isomerases, epimerases, and oxidoreductases. In this review, the recent developments in rare sugar production with these biocatalysts are discussed.
Collapse
Affiliation(s)
- Koen Beerens
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| | - Tom Desmet
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| | - Wim Soetaert
- grid.5342.0 0000000120697798 Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering Ghent University Coupure links 653 9000 Gent Belgium
| |
Collapse
|
22
|
Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 2012; 30:512-23. [DOI: 10.1016/j.biotechadv.2011.09.005] [Citation(s) in RCA: 834] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/26/2011] [Accepted: 09/12/2011] [Indexed: 12/15/2022]
|