1
|
Kim K, Kim YS, Jang JW, Lee GM. Enhancing the production of recombinant human TGF-β1 through an understanding of TGF-β1 synthesis, signaling, and endocytosis in CHO cells. Biotechnol J 2024; 19:e2300269. [PMID: 37985244 DOI: 10.1002/biot.202300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
To enhance the production of recombinant human transforming growth factor-beta1 (rhTGF-β1) in Chinese hamster ovary (CHO) cells, rhTGF-β1 was first characterized for endocytosis, signaling pathway, and overall maturation process. The mature rhTGF-β1 used for clinical application was internalized into CHO cells and inhibited the growth of CHO cells in a dose-dependent manner. However, mature rhTGF-β1 was mostly produced in the form of latent rhTGF-β1 in cultures of recombinant CHO (rCHO) cells producing rhTGF-β1 (CHO-rhTGF-β1). The concentration of active mature rhTGF-β1 in the culture supernatant of CHO-rhTGF-β1 cells was not high enough to compromise yield. In addition, a significant amount of unprocessed precursors was produced by CHO-rhTGF-β1 cells. Overexpression of PACEsol, a soluble form of furin, in CHO-rhTGF-β1 cells was effective for the proteolytic cleavage of unprocessed precursors. The highest mature rhTGF-β1 concentration (6.4 μg mL-1 ) was obtained with the PACEsol-expressing clone, which was approximately 45% higher than that of the parental clone (P < 0.01). Thus, a comprehensive understanding of the intrinsic properties of rhTGF-β1 with respect to the overall maturation process, signaling pathway, and endocytosis is essential for effectively enhancing the production of mature rhTGF-β1 in CHO cells.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Young Sik Kim
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Ju Woong Jang
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Kim K, Kim MG, Lee GM. Improving bone morphogenetic protein (BMP) production in CHO cells through understanding of BMP synthesis, signaling and endocytosis. Biotechnol Adv 2023; 62:108080. [PMID: 36526238 DOI: 10.1016/j.biotechadv.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are a group of growth factors with the clinical potential to regulate cartilage and bone formation. Functionally active mature recombinant human BMPs (rhBMPs), produced primarily in Chinese hamster ovary (CHO) cells for clinical applications, are considered difficult to express because they undergo maturation processes, signaling pathways, or endocytosis. Although BMPs are a family of proteins with similar mature domain sequence identities, their individual properties are diverse. Thus, understanding the properties of individual rhBMPs is essential to improve rhBMP production in CHO cells. In this review, we discuss various approaches to improve rhBMP production in CHO cells by understanding the overall maturation process, signaling pathways and endocytosis of individual rhBMPs.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Mi Gyeom Kim
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
3
|
Selective endocytosis of recombinant human BMPs through cell surface heparan sulfate proteoglycans in CHO cells: BMP-2 and BMP-7. Sci Rep 2021; 11:3378. [PMID: 33564092 PMCID: PMC7873082 DOI: 10.1038/s41598-021-82955-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cell surface heparan sulfate proteoglycan (HSPG)-mediated endocytosis results in poor yields of recombinant human bone morphogenetic proteins (rhBMPs) from CHO cell cultures. Upon incubation of rhBMP-2 and rhBMP-7 with CHO cells at 37 °C, both rhBMP-2 and rhBMP-7 bound to the cell surface HSPGs in CHO cells, but only rhBMP-2 was actively internalized into CHO cells. Cell surface HSPGs were found to serve as the main receptor for rhBMP-2 internalization. It was also found that the cell surface HSPG-mediated endocytosis of rhBMP-2 occurred through both the clathrin- and caveolin-dependent pathways. Blockage of rhBMP-2 internalization by the addition of structural analogs of HSPGs such as dextran sulfate (DS) and heparin dramatically increased rhBMP-2 production in recombinant CHO (rCHO) cell cultures. Compared to the control cultures, addition of DS (1.0 g/L) and heparin (0.2 g/L) resulted in a 22.0- and 19.0-fold increase in the maximum rhBMP-2 concentration, respectively. In contrast, the production of rhBMP-7, which was not internalized into the rCHO cells, did not dramatically increase upon addition of DS and heparin. Taken together, rhBMPs have a different fate in terms of HSPG-mediated internalization in CHO cells. HSPG-mediated endocytosis of each rhBMP should be understood individually to increase the rhBMP yield in rCHO cell cultures.
Collapse
|
4
|
Davy AM, Kildegaard HF, Andersen MR. Cell Factory Engineering. Cell Syst 2019; 4:262-275. [PMID: 28334575 DOI: 10.1016/j.cels.2017.02.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering. Here we condense >130 reviews and key studies in the art into a meta-review of cell factory engineering. We identified 33 generic strategies in the field, all applicable to multiple types of cells and products, and proven successful in multiple major cell types. These apply to three major categories: production of native metabolites and/or bioactives, heterologous expression of biosynthetic pathways, and protein expression. This meta-review provides general strategy guides for the broad range of applications of rational engineering of cell factories.
Collapse
Affiliation(s)
- Anne Mathilde Davy
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Improving recombinant bone morphogenetic protein-4 (BMP-4) production by autoregulatory feedback loop removal using BMP receptor-knockout CHO cell lines. Metab Eng 2019; 52:57-67. [DOI: 10.1016/j.ymben.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 01/24/2023]
|
6
|
Kim CL, Jung MY, Kim YS, Jang JW, Lee GM. Improving the production of recombinant human bone morphogenetic protein-4 in Chinese hamster ovary cell cultures by inhibition of undesirable endocytosis. Biotechnol Bioeng 2018; 115:2565-2575. [PMID: 30011067 DOI: 10.1002/bit.26798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/30/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2023]
Abstract
Endocytic regulation serves a critical role in modulating the extracellular level of signaling molecules, such as bone morphogenetic proteins (BMPs). Unfortunately, endocytosis may result in poor yields of recombinant human BMP-4 (rhBMP-4) from Chinese hamster ovary (CHO) cell cultures. When rhBMP-4 was incubated with CHO cells, rhBMP-4 was actively internalized into cells. Cell surface bound heparan sulfate proteoglycans (HSPGs) served as the major receptors for rhBMP-4 internalization. Removal of cell surface heparan sulfate (HS) by heparinases or reduction of HSPG synthesis by knockdown of xylosyltransferase2 (xylt2) in CHO cells decreased internalization of rhBMP-4. In addition, treatment with endocytosis inhibitors (chlorpromazine, genistein, and dynasore) identified a clathrin- and dynamin-dependent endocytic pathway as the major route for rhBMP-4 internalization. To enhance product yield by minimizing rhBMP-4 internalization in recombinant CHO (rCHO) cell cultures, we have tested various strategies to reduce HSPG synthesis (knockdown of xylt2 and sodium chlorate treatment) or inhibit the binding of rhBMP-4 to cell-surface-bound HSPGs (supplementation with heparin or dextran sulfate [DS]). Among these approaches, DS, which is a linear anionic sulfated polysaccharide with similarity to HS chains, was the most effective in enhancing rhBMP-4 production in rCHO cell cultures. Compared with the control cultures, DS addition to the culture medium (1.0 g/L) resulted in 1.4-fold and 2.3-fold increases in maximum rhBMP-4 concentration in batch and fed-batch cultures, respectively. Taken together, the addition of DS, an effective competitor of HSPGs, improved rhBMP-4 production in rCHO cell cultures through blockage of rhBMP-4 internalization.
Collapse
Affiliation(s)
- Che Lin Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Mi Yeong Jung
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Young Sik Kim
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Ju Woong Jang
- Institute of Biomaterial and Medical Engineering, Cellumed, Seoul, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv 2017; 35:64-76. [DOI: 10.1016/j.biotechadv.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/12/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
|
8
|
Kim CL, Bang YL, Kim YS, Jang JW, Lee GM. Alleviation of proteolytic degradation of recombinant human bone morphogenetic protein-4 by repeated batch culture of Chinese hamster ovary cells. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Huang T, Hinck AP. Production, Isolation, and Structural Analysis of Ligands and Receptors of the TGF-β Superfamily. Methods Mol Biol 2016; 1344:63-92. [PMID: 26520118 PMCID: PMC4846357 DOI: 10.1007/978-1-4939-2966-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The ability to understand the molecular mechanisms by which secreted signaling proteins of the TGF-β superfamily assemble their cell surface receptors into complexes to initiate downstream signaling is dependent upon the ability to determine atomic-resolution structures of the signaling proteins, the ectodomains of the receptors, and the complexes that they form. The structures determined to date have revealed major differences in the overall architecture of the signaling complexes formed by the TGF-βs and BMPs, which has provided insights as to how they have evolved to fulfill their distinct functions. Such studies, have however, only been applied to a few members of the TGF-β superfamily, which is largely due to the difficulty of obtaining milligram-scale quantities of highly homogenous preparations of the disulfide-rich signaling proteins and receptor ectodomains of the superfamily. Here we describe methods used to produce signaling proteins and receptor ectodomains of the TGF-β superfamily using bacterial and mammalian expression systems and procedures to purify them to homogeneity.
Collapse
Affiliation(s)
- Tao Huang
- Protein Chemistry, Novo Nordisk Research Center China, 20 Life Science Park Rd, Bldg 2, Beijing, 102206, China
| | - Andrew P Hinck
- Protein Chemistry, Novo Nordisk Research Center China, 20 Life Science Park Rd, Bldg 2, Beijing, 102206, China.
| |
Collapse
|
10
|
Yoon S, Lee Y, Pi J, Jeong Y, Baek K, Yoon J. Overproduction of recombinant human bone morphogenetic protein-7 in Chinese hamster ovary cells. Protein Expr Purif 2015; 120:87-91. [PMID: 26711959 DOI: 10.1016/j.pep.2015.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 11/17/2022]
Abstract
Bone morphogenetic protein-7 is a multifunctional growth factor involved in various cellular processes such as osteogenesis, kidney and eye development, brown adipogenesis, and bone metastasis, and thus has been considered to have therapeutic potential for treating various diseases. In this study, we established a Chinese hamster ovary (CHO) cell line stably overexpressing recombinant human BMP-7 (rhBMP-7). Over the course of a 14-day fed-batch culture process in a 7.5-l bioreactor (5-l working volume) using chemically defined medium, the established cells could produce over 188 mg/l of rhBMP-7 protein. The rhBMP-7 was purified to homogeneity from the culture supernatant using a two-step chromatographic procedure that resulted in a recovery rate of approximately 55%, with protein purity greater than 95%. The purified rhBMP-7 was further demonstrated to be functionally active by measuring the proliferation of MC3T3-E1 cells, revealing a half-maximal effective concentration of 28.31 ng/ml.
Collapse
Affiliation(s)
- Sena Yoon
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Yujin Lee
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Jia Pi
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Kwangehee Baek
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
11
|
Glutamine substitution: the role it can play to enhance therapeutic protein production. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.15.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Sathyamurthy M, Kim CL, Bang YL, Kim YS, Jang JW, Lee GM. Characterization and expression of proprotein convertases in CHO cells: Efficient proteolytic maturation of human bone morphogenetic protein-7. Biotechnol Bioeng 2014; 112:560-8. [DOI: 10.1002/bit.25458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 09/01/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Madhavi Sathyamurthy
- Department of Biological Sciences; KAIST; 335 Gwahak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Che Lin Kim
- Department of Biological Sciences; KAIST; 335 Gwahak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - You Lim Bang
- Institute of Biomaterial and Medical Engineering; Cellumed; 402 Gasan-dong, Geumcheon-gu Seoul 153-782 Republic of Korea
| | - Young Sik Kim
- Institute of Biomaterial and Medical Engineering; Cellumed; 402 Gasan-dong, Geumcheon-gu Seoul 153-782 Republic of Korea
| | - Ju Woong Jang
- Institute of Biomaterial and Medical Engineering; Cellumed; 402 Gasan-dong, Geumcheon-gu Seoul 153-782 Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences; KAIST; 335 Gwahak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|