1
|
Comer AD, Abraham JP, Steiner AJ, Korosh TC, Markley AL, Pfleger BF. Enhancing photosynthetic production of glycogen-rich biomass for use as a fermentation feedstock. FRONTIERS IN ENERGY RESEARCH 2020; 8:93. [PMID: 34164390 PMCID: PMC8218994 DOI: 10.3389/fenrg.2020.00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Current sources of fermentation feedstocks, i.e. corn, sugar cane, or plant biomass, fall short of demand for liquid transportation fuels and commodity chemicals in the United States. Aquatic phototrophs including cyanobacteria have the potential to supplement the supply of current fermentable feedstocks. In this strategy, cells are engineered to accumulate storage molecules including glycogen, cellulose, and/or lipid oils that can be extracted from harvested biomass and fed to heterotrophic organisms engineered to produce desired chemical products. In this manuscript, we examine the production of glycogen in the model cyanobacteria, Synechococcus sp. strain PCC 7002, and subsequent conversion of cyanobacterial biomass by an engineered Escherichia coli to octanoic acid as a model product. In effort to maximize glycogen production, we explored the deletion of catabolic enzymes and overexpression of GlgC, an enzyme that catalyzes the first committed step towards glycogen synthesis. We found that deletion of glgP increased final glycogen titers when cells were grown in diurnal light. Overexpression of GlgC led to a temporal increase in glycogen content but not in an overall increase in final titer or content. The best strains were grown, harvested, and used to formulate media for growth of E. coli. The cyanobacterial media was able to support the growth of an engineered E. coli and produce octanoic acid at the same titer as common laboratory media.
Collapse
Affiliation(s)
- Austin D. Comer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Joshua P. Abraham
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Alexander J. Steiner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Travis C. Korosh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Andrew L. Markley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States
- Corresponding author. 3629 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706, United States. Phone: +1 608 890 1940. Fax: +1 608 262-5434.
| |
Collapse
|
2
|
Production of Bioplastic Compounds by Genetically Manipulated and Metabolic Engineered Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:155-169. [DOI: 10.1007/978-981-13-0854-3_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:171-213. [PMID: 30091096 DOI: 10.1007/978-981-13-0854-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
With the demand for renewable energy growing, hydrogen (H2) is becoming an attractive energy carrier. Developing H2 production technologies with near-net zero carbon emissions is a major challenge for the "H2 economy." Certain cyanobacteria inherently possess enzymes, nitrogenases, and bidirectional hydrogenases that are capable of H2 evolution using sunlight, making them ideal cell factories for photocatalytic conversion of water to H2. With the advances in synthetic biology, cyanobacteria are currently being developed as a "plug and play" chassis to produce H2. This chapter describes the metabolic pathways involved and the theoretical limits to cyanobacterial H2 production and summarizes the metabolic engineering technologies pursued.
Collapse
|
4
|
Korosh TC, Markley AL, Clark RL, McGinley LL, McMahon KD, Pfleger BF. Engineering photosynthetic production of L-lysine. Metab Eng 2017; 44:273-283. [PMID: 29111438 PMCID: PMC5776718 DOI: 10.1016/j.ymben.2017.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/01/2017] [Accepted: 10/26/2017] [Indexed: 10/28/2022]
Abstract
L-lysine and other amino acids are commonly produced through fermentation using strains of heterotrophic bacteria such as Corynebacterium glutamicum. Given the large amount of sugar this process consumes, direct photosynthetic production is intriguing alternative. In this study, we report the development of a cyanobacterium, Synechococcus sp. strain PCC 7002, capable of producing L-lysine with CO2 as the sole carbon-source. We found that heterologous expression of a lysine transporter was required to excrete lysine and avoid intracellular accumulation that correlated with poor fitness. Simultaneous expression of a feedback inhibition resistant aspartate kinase and lysine transporter were sufficient for high productivities, but this was also met with a decreased chlorophyll content and reduced growth rates. Increasing the reductant supply by using NH4+, a more reduced nitrogen source relative to NO3-, resulted in a two-fold increase in productivity directing 18% of fixed carbon to lysine. Given this advantage, we demonstrated lysine production from media formulated with a municipal wastewater treatment sidestream as a nutrient source for increased economic and environmental sustainability. Based on our results, we project that Synechococcus sp. strain PCC 7002 could produce lysine at areal productivities approaching that of sugar cane to lysine via fermentation using non-agricultural lands and low-cost feedstocks.
Collapse
Affiliation(s)
- Travis C Korosh
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Andrew L Markley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Ryan L Clark
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Laura L McGinley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Katherine D McMahon
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI 53706, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
5
|
Tomita Y, Yoshioka K, Iijima H, Nakashima A, Iwata O, Suzuki K, Hasunuma T, Kondo A, Hirai MY, Osanai T. Succinate and Lactate Production from Euglena gracilis during Dark, Anaerobic Conditions. Front Microbiol 2016; 7:2050. [PMID: 28066371 PMCID: PMC5174102 DOI: 10.3389/fmicb.2016.02050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Euglena gracilis is a eukaryotic, unicellular phytoflagellate that has been widely studied in basic science and applied science. Under dark, anaerobic conditions, the cells of E. gracilis produce a wax ester that can be converted into biofuel. Here, we demonstrate that under dark, anaerobic conditions, E. gracilis excretes organic acids, such as succinate and lactate, which are bulk chemicals used in the production of bioplastics. The levels of succinate were altered by changes in the medium and temperature during dark, anaerobic incubation. Succinate production was enhanced when cells were incubated in CM medium in the presence of NaHCO3. Excretion of lactate was minimal in the absence of external carbon sources, but lactate was produced in the presence of glucose during dark, anaerobic incubation. E. gracilis predominantly produced L-lactate; however, the percentage of D-lactate increased to 28.4% in CM medium at 30°C. Finally, we used a commercial strain of E. gracilis for succinate production and found that nitrogen-starved cells, incubated under dark, anaerobic conditions, produced 869.6 mg/L succinate over a 3-day incubation period, which was 70-fold higher than the amount produced by nitrogen-replete cells. This is the first study to demonstrate organic acid excretion by E. gracilis cells and to reveal novel aspects of primary carbon metabolism in this organism.
Collapse
Affiliation(s)
- Yuko Tomita
- School of Agriculture, Meiji University Kawasaki, Japan
| | | | - Hiroko Iijima
- School of Agriculture, Meiji University Kawasaki, Japan
| | | | | | | | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University Kobe, Japan
| | | | - Takashi Osanai
- School of Agriculture, Meiji UniversityKawasaki, Japan; RIKEN Center for Sustainable Resource ScienceYokohama, Japan
| |
Collapse
|
6
|
Iijima H, Shirai T, Okamoto M, Pinto F, Tamagnini P, Hasunuma T, Kondo A, Hirai MY, Osanai T. Metabolomics-based analysis revealing the alteration of primary carbon metabolism by the genetic manipulation of a hydrogenase HoxH in Synechocystis sp. PCC 6803. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Hasunuma T, Matsuda M, Kondo A. Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism. Metab Eng Commun 2016; 3:130-141. [PMID: 29468119 PMCID: PMC5779724 DOI: 10.1016/j.meteno.2016.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022] Open
Abstract
Succinate produced by microorganisms can replace currently used petroleum-based succinate but typically requires mono- or poly-saccharides as a feedstock. The cyanobacterium Synechocystis sp. PCC6803 can produce organic acids such as succinate from CO2 not supplemented with sugars under dark anoxic conditions using an unknown metabolic pathway. The TCA cycle in cyanobacteria branches into oxidative and reductive routes. Time-course analyses of the metabolome, transcriptome and metabolic turnover described here revealed dynamic changes in the metabolism of Synechocystis sp. PCC6803 cultivated under dark anoxic conditions, allowing identification of the carbon flow and rate-limiting steps in glycogen catabolism. Glycogen biosynthesized from CO2 assimilated during periods of light exposure is catabolized to succinate via glycolysis, the anaplerotic pathway, and the reductive TCA cycle under dark anoxic conditions. Expression of the phosphoenolpyruvate (PEP) carboxylase gene (ppc) was identified as a rate-limiting step in succinate biosynthesis and this rate limitation was alleviated by ppc overexpression, resulting in improved succinate excretion. The sugar-free succinate production was further enhanced by the addition of bicarbonate. In vivo labeling with NaH13CO3 clearly showed carbon incorporation into succinate via the anaplerotic pathway. Bicarbonate is in equilibrium with CO2. Succinate production by Synechocystis sp. PCC6803 therefore holds significant promise for CO2 capture and utilization. The cyanobacterium Synechocystis produces succinate under dark anoxic condition. Multi-omics revealed dynamic change in metabolism under dark anoxic condition. Carbon flow and rate-limiting steps in glycogen catabolism was elucidated. PEP carboxylase gene overexpression improved Synechocystis succinate production. Bicarbonate addition to medium dramatically improved succinate production.
Collapse
Affiliation(s)
- Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mami Matsuda
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Shirai T, Osanai T, Kondo A. Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model. Microb Cell Fact 2016; 15:13. [PMID: 26783098 PMCID: PMC4717628 DOI: 10.1186/s12934-016-0416-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 01/07/2016] [Indexed: 12/18/2022] Open
Abstract
Background Designing optimal intracellular metabolism is essential for using microorganisms to produce useful compounds. Computerized calculations for flux balance analysis utilizing a genome-scale model have been performed for such designs. Many genome-scale models have been developed for different microorganisms. However, optimal designs of intracellular metabolism aimed at producing a useful compound often utilize metabolic reactions of only the host microbial cells. In the present study, we added reactions other than the metabolic reactions with Synechosystis sp. 6803 as a host to its genome-scale model, and constructed a metabolic model of hybrid cells (SyHyMeP) using computerized analysis. Using this model provided a metabolic design that improves the theoretical yield of succinic acid, which is a useful compound. Results Constructing the SyHyMeP model enabled new metabolic designs for producing useful compounds. In the present study, we developed a metabolic design that allowed for improved theoretical yield in the production of succinic acid during glycogen metabolism by Synechosystis sp. 6803. The theoretical yield of succinic acid production using a genome-scale model of these cells was 1.00 mol/mol-glucose, but use of the SyHyMeP model enabled a metabolic design with which a 33 % increase in theoretical yield is expected due to the introduction of isocitrate lyase, adding activations of endogenous tree reactions via D-glycerate in Synechosystis sp. 6803. Conclusions The SyHyMeP model developed in this study has provided a new metabolic design that is not restricted only to the metabolic reactions of individual microbial cells. The concept of construction of this model requires only replacement of the genome-scale model of the host microbial cells and can thus be applied to various useful microorganisms for metabolic design to produce compounds. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0416-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomokazu Shirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Takashi Osanai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Department of Agricultural Chemistry, School of Agriculture, Meiji University, 1-1-1, Higashimita, Tamaku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Akihiko Kondo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
9
|
Qian X, Kumaraswamy GK, Zhang S, Gates C, Ananyev GM, Bryant DA, Dismukes GC. Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 2015; 113:979-88. [PMID: 26479976 DOI: 10.1002/bit.25862] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 11/07/2022]
Abstract
To produce cellular energy, cyanobacteria reduce nitrate as the preferred pathway over proton reduction (H2 evolution) by catabolizing glycogen under dark anaerobic conditions. This competition lowers H2 production by consuming a large fraction of the reducing equivalents (NADPH and NADH). To eliminate this competition, we constructed a knockout mutant of nitrate reductase, encoded by narB, in Synechococcus sp. PCC 7002. As expected, ΔnarB was able to take up intracellular nitrate but was unable to reduce it to nitrite or ammonia, and was unable to grow photoautotrophically on nitrate. During photoautotrophic growth on urea, ΔnarB significantly redirects biomass accumulation into glycogen at the expense of protein accumulation. During subsequent dark fermentation, metabolite concentrations--both the adenylate cellular energy charge (∼ATP) and the redox poise (NAD(P)H/NAD(P))--were independent of nitrate availability in ΔnarB, in contrast to the wild type (WT) control. The ΔnarB strain diverted more reducing equivalents from glycogen catabolism into reduced products, mainly H2 and d-lactate, by 6-fold (2.8% yield) and 2-fold (82.3% yield), respectively, than WT. Continuous removal of H2 from the fermentation medium (milking) further boosted net H2 production by 7-fold in ΔnarB, at the expense of less excreted lactate, resulting in a 49-fold combined increase in the net H2 evolution rate during 2 days of fermentation compared to the WT. The absence of nitrate reductase eliminated the inductive effect of nitrate addition on rerouting carbohydrate catabolism from glycolysis to the oxidative pentose phosphate (OPP) pathway, indicating that intracellular redox poise and not nitrate itself acts as the control switch for carbon flux branching between pathways.
Collapse
Affiliation(s)
- Xiao Qian
- Waksman Institute, Rutgers University, New Brunswick, New Jersey.,Department of Microbiology and Biochemistry, Rutgers University, New Brunswick, New Jersey
| | | | - Shuyi Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania
| | - Colin Gates
- Waksman Institute, Rutgers University, New Brunswick, New Jersey
| | | | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana
| | - G Charles Dismukes
- Waksman Institute, Rutgers University, New Brunswick, New Jersey. .,Department of Chemistry and Biological Chemistry, Rutgers University, New Brunswick, New Jersey, 08901.
| |
Collapse
|
10
|
Osanai T, Shirai T, Iijima H, Nakaya Y, Okamoto M, Kondo A, Hirai MY. Genetic manipulation of a metabolic enzyme and a transcriptional regulator increasing succinate excretion from unicellular cyanobacterium. Front Microbiol 2015; 6:1064. [PMID: 26500619 PMCID: PMC4594341 DOI: 10.3389/fmicb.2015.01064] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/15/2015] [Indexed: 11/13/2022] Open
Abstract
Succinate is a building block compound that the U.S. Department of Energy (DOE) has declared as important in biorefineries, and it is widely used as a commodity chemical. Here, we identified the two genes increasing succinate production of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Succinate was excreted under dark, anaerobic conditions, and its production level increased by knocking out ackA, which encodes an acetate kinase, and by overexpressing sigE, which encodes an RNA polymerase sigma factor. Glycogen catabolism and organic acid biosynthesis were enhanced in the mutant lacking ackA and overexpressing sigE, leading to an increase in succinate production reaching five times of the wild-type levels. Our genetic and metabolomic analyses thus demonstrated the effect of genetic manipulation of a metabolic enzyme and a transcriptional regulator on succinate excretion from this cyanobacterium with the data based on metabolomic technique.
Collapse
Affiliation(s)
- Takashi Osanai
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Department of Agricultural Chemistry, School of Agriculture, Meiji University Kawasaki, Japan
| | | | - Hiroko Iijima
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Department of Agricultural Chemistry, School of Agriculture, Meiji University Kawasaki, Japan
| | - Yuka Nakaya
- RIKEN Center for Sustainable Resource Science Yokohama, Japan ; Biomass Engineering Program, RIKEN Yokohama, Japan
| | - Mami Okamoto
- Biomass Engineering Program, RIKEN Yokohama, Japan
| | - Akihiko Kondo
- Biomass Engineering Program, RIKEN Yokohama, Japan ; Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University Kobe, Japan
| | - Masami Y Hirai
- RIKEN Center for Sustainable Resource Science Yokohama, Japan
| |
Collapse
|