1
|
Zheng C, Liang Z, Lin Q, Chen M, Chang C, Zhou J, Yang F, Chen Y, Zhao M, Huang L, Qin L. Pathology, viremia, apoptosis during MDV latency in vaccinated chickens. Virology 2023; 579:169-177. [PMID: 36696868 DOI: 10.1016/j.virol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Marek's disease, caused by herpes virus infection, is a highly contagious disease characterized by latent infection. Here, we aimed to study the pathology, viremia and apoptosis during the Marek's Disease Virus (MDV) latency in vaccinated chickens. Vaccinated chickens were inoculated with the MD5 strain and were dissected at different time points. The viremia occurs in the spleen and thymus during the latency period of MD5 infection, however, lesions can be observed in the liver tissue. The latency-associated early gene of MDV, i.e., ICP4, was highly expressed in the spleen and thymus during the early latency. Compared with the early cytolytic stage, apoptosis of splenocytes was remarkably downregulated in the latency period. This study suggests that MDV latency could occur in the spleen and thymus in vaccinated chickens and there is a negative correlation between the MDV latency and apoptosis of spleen. MDV latency can resist the apoptosis of spleen.
Collapse
Affiliation(s)
- Congsen Zheng
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zexian Liang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qiaoer Lin
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Meiting Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Chuanzhe Chang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jun Zhou
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Fan Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yanfeng Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, Guangdong, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China.
| | - Limei Qin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, Guangdong, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China.
| |
Collapse
|
2
|
Gennart I, Petit A, Wiggers L, Pejaković S, Dauchot N, Laurent S, Coupeau D, Muylkens B. Epigenetic Silencing of MicroRNA-126 Promotes Cell Growth in Marek's Disease. Microorganisms 2021; 9:microorganisms9061339. [PMID: 34205549 PMCID: PMC8235390 DOI: 10.3390/microorganisms9061339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
During latency, herpesvirus infection results in the establishment of a dormant state in which a restricted set of viral genes are expressed. Together with alterations of the viral genome, several host genes undergo epigenetic silencing during latency. These epigenetic dysregulations of cellular genes might be involved in the development of cancer. In this context, Gallid alphaherpesvirus 2 (GaHV-2), causing Marek’s disease (MD) in susceptible chicken, was shown to impair the expression of several cellular microRNAs (miRNAs). We decided to focus on gga-miR-126, a host miRNA considered a tumor suppressor through signaling pathways controlling cell proliferation. Our objectives were to analyze the cause and the impact of miR-126 silencing during GaHV-2 infection. This cellular miRNA was found to be repressed at crucial steps of the viral infection. In order to determine whether miR-126 low expression level was associated with specific epigenetic signatures, DNA methylation patterns were established in the miR-126 gene promoter. Repression was associated with hypermethylation at a CpG island located in the miR-126 host gene epidermal growth factor like-7 (EGFL-7). A strategy was developed to conditionally overexpress miR-126 and control miRNAs in transformed CD4+ T cells propagated from Marek’s disease (MD) lymphoma. This functional assay showed that miR-126 restoration specifically diminishes cell proliferation. We identified CT10 regulator of kinase (CRK), an adaptor protein dysregulated in several human malignancies, as a candidate target gene. Indeed, CRK protein levels were markedly reduced by the miR-126 restoration.
Collapse
Affiliation(s)
- Isabelle Gennart
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Astrid Petit
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
- Correspondence: (A.P.); (B.M.)
| | - Laetitia Wiggers
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Srđan Pejaković
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Nicolas Dauchot
- Unit of Research in Plant Cellular and Molecular Biology (URBV), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium;
| | - Sylvie Laurent
- Département Santé Animale, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre Val de Loire, 37380 Nouzilly, France;
| | - Damien Coupeau
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Benoît Muylkens
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
- Correspondence: (A.P.); (B.M.)
| |
Collapse
|
3
|
Hicks JA, Trakooljul N, Liu HC. Alterations in cellular and viral microRNA and cellular gene expression in Marek's disease virus-transformed T-cell lines treated with sodium butyrate. Poult Sci 2019; 98:642-652. [PMID: 30184155 DOI: 10.3382/ps/pey412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
A shared feature of herpesviruses is their ability to enter a latent state following an initially lytic infection. Marek's disease virus serotype 1 (MDV-1) is an oncogenic avian herpesvirus. Small RNA profiling studies have suggested that microRNAs (miRNAs) are involved in viral latency. Sodium butyrate treatment is known to induce herpesvirus reactivation. The present study was undertaken to determine transcriptome and miRNome changes induced by sodium butyrate in 2 MDV-transformed cell lines, RP2 and CU115. In the first 24 h post-treatment, microarray analysis of transcriptional changes in cell lines RP2 and CU115 identified 137 and 114 differentially expressed genes, respectively. Small RNA deep-sequencing analysis identified 17 cellular miRNAs that were differentially expressed. The expression of MDV-encoded miRNAs was also altered upon treatment. Many of the genes and miRNAs that are differentially expressed are involved in regulation of the cell cycle, mitosis, DNA metabolism, and lymphocyte differentiation.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Nares Trakooljul
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Boumart I, Figueroa T, Dambrine G, Muylkens B, Pejakovic S, Rasschaert D, Dupuy C. GaHV-2 ICP22 protein is expressed from a bicistronic transcript regulated by three GaHV-2 microRNAs. J Gen Virol 2018; 99:1286-1300. [PMID: 30067174 DOI: 10.1099/jgv.0.001124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Herpesviruses have a lifecycle consisting of successive lytic, latent and reactivation phases. Only three infected cell proteins (ICPs) have been described for the oncogenic Marek's disease virus (or Gallid herpes virus 2, GaHV-2): ICP4, ICP22 and ICP27. We focus here on ICP22, confirming its cytoplasmic location and showing that ICP22 is expressed during productive phases of the lifecycle, via a bicistronic transcript encompassing the US10 gene. We also identified the unique promoter controlling ICP22 expression, and its core promoter, containing functional responsive elements including E-box, ETS-1 and GATA elements involved in ICP22 transactivation. ICP22 gene expression was weakly regulated by DNA methylation and activated by ICP4 or ICP27 proteins. We also investigated the function of GaHV-2 ICP22. We found that this protein repressed transcription from its own promoter and from those of IE ICP4 and ICP27, and the late gK promoter. Finally, we investigated posttranscriptional ICP22 regulation by GaHV-2 microRNAs. We found that mdv1-miR-M5-3p and -M1-5p downregulated ICP22 mRNA expression during latency, whereas, unexpectedly, mdv1-miR-M4-5p upregulated the expression of the protein ICP22, indicating a tight regulation of ICP22 expression by microRNAs.
Collapse
Affiliation(s)
- Imane Boumart
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Thomas Figueroa
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France.,†Present address: Interactions Hôtes Agents Pathogènes, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Ginette Dambrine
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Benoit Muylkens
- 2Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Srdan Pejakovic
- 2Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Denis Rasschaert
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| | - Catherine Dupuy
- 1Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais de Tours, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
5
|
Rasschaert P, Figueroa T, Dambrine G, Rasschaert D, Laurent S. Alternative splicing of a viral mirtron differentially affects the expression of other microRNAs from its cluster and of the host transcript. RNA Biol 2016; 13:1310-1322. [PMID: 27715458 DOI: 10.1080/15476286.2016.1244600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interplay between alternative splicing and the Microprocessor may have differential effects on the expression of intronic miRNAs organized into clusters. We used a viral model - the LAT long non-coding RNA (LAT lncRNA) of Marek's disease oncogenic herpesvirus (MDV-1), which has the mdv1-miR-M8-M6-M7-M10 cluster embedded in its first intron - to assess the impact of splicing modifications on the biogenesis of each of the miRNAs from the cluster. Drosha silencing and alternative splicing of an extended exon 2 of the LAT lncRNA from a newly identified 3' splice site (SS) at the end of the second miRNA of the cluster showed that mdv1-miR-M6 was a 5'-tailed mirtron. We have thus identified the first 5'-tailed mirtron within a cluster of miRNAs for which alternative splicing is directly associated with differential expression of the other miRNAs of the cluster, with an increase in intronic mdv1-miR-M8 expression and a decrease in expression of the exonic mdv1-miR-M7, and indirectly associated with regulation of the host transcript. According to the alternative 3SS used for the host intron splicing, the mdv1-miR-M6 is processed as a mirtron by the spliceosome, dispatching the other miRNAs of the cluster into intron and exon, or as a canonical miRNA by the Microprocessor complex. The viral mdv1-miR-M6 mirtron is the first mirtron described that can also follow the canonical pathway.
Collapse
Affiliation(s)
- Perrine Rasschaert
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Thomas Figueroa
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Ginette Dambrine
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Denis Rasschaert
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France
| | - Sylvie Laurent
- a Equipe Transcription et Lymphome Viro-Induit (TLVI), UMR 7261 CNRS, Université François Rabelais , Parc de Grandmont , Tours , France.,b Département de Santé Animale , INRA , Nouzilly , France
| |
Collapse
|
6
|
MicroRNA Stability in FFPE Tissue Samples: Dependence on GC Content. PLoS One 2016; 11:e0163125. [PMID: 27649415 PMCID: PMC5029930 DOI: 10.1371/journal.pone.0163125] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/03/2016] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs responsible for fine-tuning of gene expression at post-transcriptional level. The alterations in miRNA expression levels profoundly affect human health and often lead to the development of severe diseases. Currently, high throughput analyses, such as microarray and deep sequencing, are performed in order to identify miRNA biomarkers, using archival patient tissue samples. MiRNAs are more robust than longer RNAs, and resistant to extreme temperatures, pH, and formalin-fixed paraffin-embedding (FFPE) process. Here, we have compared the stability of miRNAs in FFPE cardiac tissues using next-generation sequencing. The mode read length in FFPE samples was 11 nucleotides (nt), while that in the matched frozen samples was 22 nt. Although the read counts were increased 1.7-fold in FFPE samples, compared with those in the frozen samples, the average miRNA mapping rate decreased from 32.0% to 9.4%. These results indicate that, in addition to the fragmentation of longer RNAs, miRNAs are to some extent degraded in FFPE tissues as well. The expression profiles of total miRNAs in two groups were highly correlated (0.88 <r < 0.92). However, the relative read count of each miRNA was different depending on the GC content (p<0.0001). The unequal degradation of each miRNA affected the abundance ranking in the library, and miR-133a was shown to be the most abundant in FFPE cardiac tissues instead of miR-1, which was predominant before fixation. Subsequent quantitative PCR (qPCR) analyses revealed that miRNAs with GC content of less than 40% are more degraded than GC-rich miRNAs (p<0.0001). We showed that deep sequencing data obtained using FFPE samples cannot be directly compared with that of fresh frozen samples. The combination of miRNA deep sequencing and other quantitative analyses, such as qPCR, may improve the utility of archival FFPE tissue samples.
Collapse
|
7
|
Gennart I, Coupeau D, Pejaković S, Laurent S, Rasschaert D, Muylkens B. Marek's disease: Genetic regulation of gallid herpesvirus 2 infection and latency. Vet J 2015; 205:339-48. [PMID: 26067852 DOI: 10.1016/j.tvjl.2015.04.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/12/2022]
Abstract
Gallid herpesvirus-2 (GaHV-2) is an oncogenic α-herpesvirus that causes Marek's disease (MD), a T cell lymphosarcoma (lymphoma) of domestic fowl (chickens). The GaHV-2 genome integrates by homologous recombination into the host genome and, by modulating expression of viral and cellular genes, induces transformation of latently infected cells. MD is a unique model of viral oncogenesis. Mechanisms implicated in the regulation of viral and cellular genes during GaHV-2 infection operate at transcriptional, post-transcriptional and post-translational levels, with involvement of viral and cellular transcription factors, along with epigenetic modifications, alternative splicing, microRNAs and post-translational modifications of viral proteins. Meq, the major oncogenic protein of GaHV-2, is a viral transcription factor that modulates expression of viral genes, for example by binding to the viral bidirectional promoter of the pp38-pp24/1.8 kb mRNA, and also modulates expression of cellular genes, such as Bcl-2 and matrix metalloproteinase 3. GaHV-2 expresses viral telomerase RNA subunit (vTR), which forms a complex with the cellular telomerase reverse transcriptase (TERT), thus contributing to tumorigenesis, while vTR independent of telomerase activity is implicated in metastasis. Expression of a viral interleukin 8 homologue may contribute to lymphomagenesis. Inhibition of expression of the pro-apoptotic factors JARID2 and SMAD2 by viral microRNAs may promote the survival and proliferation of GaHV-2 latently infected cells, thus enhancing tumorigenesis, while inhibition of interleukin 18 by viral microRNAs may be involved in evasion of immune surveillance. Viral envelope glycoproteins derived from glycoprotein B (gp60 and gp49), as well as glycoprotein C, may also play a role in immune evasion.
Collapse
Affiliation(s)
- Isabelle Gennart
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Damien Coupeau
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Srdan Pejaković
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Sylvie Laurent
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Denis Rasschaert
- Transcription, Lymphome Viro-Induit, University François Rabelais, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| | - Benoit Muylkens
- Veterinary Integrated Research Unit, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium.
| |
Collapse
|
8
|
Asgari S. Regulatory role of cellular and viral microRNAs in insect-virus interactions. CURRENT OPINION IN INSECT SCIENCE 2015; 8:104-110. [PMID: 32846658 DOI: 10.1016/j.cois.2014.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 06/11/2023]
Abstract
The discovery of microRNAs (miRNAs) and their functions has led to a paradigm shift in our understanding of the regulation of gene expression, adding an extra layer of complexity for the mechanisms of gene expression. Both cellular and virus encoded miRNAs play important roles in virus-host interactions that may affect virus replication and the outcome of infection. Recent developments in RNA-seq platforms and bioinformatics tools have accelerated the discovery of miRNAs, their targets, and a myriad of associated research in various species. Here, recent findings and developments in miRNA research pertinent to insect host-virus interactions are reviewed and analyzed.
Collapse
Affiliation(s)
- Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|