1
|
Optimization of 2-Phenylethanol Production from Sweet Whey Fermentation Using Kluyveromyces marxianus. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The growing demand for natural products benefits the development of bioprocesses to obtain value-added compounds using residues such as sweet whey, which is rich in lactose. The yeast Kluyveromyces marxianus can ferment sweet whey to obtain 2-phenylethanol (2-PhEtOH), which is a superior alcohol with a rose aroma. Such fermentation only requires the addition of L-phenylalanine (precursor) and (NH4)2SO4 (salt). Therefore, it was sought to improve the fermentation conditions to produce 2-PhEtOH, which, in turn, would achieve the maximum decrease in the Chemical Oxygen Demand (COD) of the fermentation medium. With the use of the Response Surface Methodology and the application of a Central Composite Design for optimization, two parameters were evaluated as a function of time: salt concentration and precursor. The experimental data were adjusted to a second order polynomial, identifying that the precursor concentration presents a statistically significant effect. The best conditions were: 4.50 g/L of precursor and 0.76 g/L of salt, with a maximum production of 1.2 g/L (2-PhEtOH) at 48 h and achieving a maximum percentage of COD removal of 76% at 96 h. Finally, the optimal conditions were experimentally validated, recommending the use of the model.
Collapse
|
2
|
Ye Z, Li S, Hennigan JN, Lebeau J, Moreb EA, Wolf J, Lynch MD. Two-stage dynamic deregulation of metabolism improves process robustness & scalability in engineered E. coli. Metab Eng 2021; 68:106-118. [PMID: 34600151 DOI: 10.1016/j.ymben.2021.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 08/12/2021] [Accepted: 09/25/2021] [Indexed: 10/20/2022]
Abstract
We report that two-stage dynamic control improves bioprocess robustness as a result of the dynamic deregulation of central metabolism. Dynamic control is implemented during stationary phase using combinations of CRISPR interference and controlled proteolysis to reduce levels of central metabolic enzymes. Reducing the levels of key enzymes alters metabolite pools resulting in deregulation of the metabolic network. Deregulated networks are less sensitive to environmental conditions improving process robustness. Process robustness in turn leads to predictable scalability, minimizing the need for traditional process optimization. We validate process robustness and scalability of strains and bioprocesses synthesizing the important industrial chemicals alanine, citramalate and xylitol. Predictive high throughput approaches that translate to larger scales are critical for metabolic engineering programs to truly take advantage of the rapidly increasing throughput and decreasing costs of synthetic biology.
Collapse
Affiliation(s)
- Zhixia Ye
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; DMC Biotechnologies, Inc., Durham, NC, USA
| | - Shuai Li
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Juliana Lebeau
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Eirik A Moreb
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jacob Wolf
- DMC Biotechnologies, Inc., Boulder, CO, USA
| | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Ebrahimzadeh Kouchesfahani M, Babaeipour V. Micro bioreactor scale-up and industrialization: a critical review of the methods, their prerequisites, and perquisites. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.19.02595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Junne S, Neubauer P. How scalable and suitable are single-use bioreactors? Curr Opin Biotechnol 2018; 53:240-247. [DOI: 10.1016/j.copbio.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/27/2023]
|
5
|
Hernandez-Martinez GR, Ortiz-Alvarez D, Perez-Roa M, Urbina-Suarez NA, Thalasso F. Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:63-70. [PMID: 29510328 DOI: 10.1016/j.jhazmat.2018.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (KS), inhibition constant (KI), and maximum oxygen uptake rate (OURmax). The results indicated that, in a range of concentration from 0 to 40 mg L-1, the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition.
Collapse
Affiliation(s)
- Gabriel R Hernandez-Martinez
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Departamento de Biotecnología y Bioingeniería, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Daniela Ortiz-Alvarez
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Departamento de Biotecnología y Bioingeniería, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico; Universidad Francisco de Paula Santander, Av. Gran Colombia 12E-96, San José de Cúcuta, Colombia
| | - Michael Perez-Roa
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Departamento de Biotecnología y Bioingeniería, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico; Universidad Francisco de Paula Santander, Av. Gran Colombia 12E-96, San José de Cúcuta, Colombia
| | | | - Frederic Thalasso
- Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Departamento de Biotecnología y Bioingeniería, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
6
|
Tan JS, Abbasiliasi S, Kadkhodaei S, Tam YJ, Tang TK, Lee YY, Ariff AB. Microtiter miniature shaken bioreactor system as a scale-down model for process development of production of therapeutic alpha-interferon2b by recombinant Escherichia coli. BMC Microbiol 2018; 18:3. [PMID: 29439680 PMCID: PMC5810150 DOI: 10.1186/s12866-017-1145-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 12/20/2017] [Indexed: 11/23/2022] Open
Abstract
Background Demand for high-throughput bioprocessing has dramatically increased especially in the biopharmaceutical industry because the technologies are of vital importance to process optimization and media development. This can be efficiently boosted by using microtiter plate (MTP) cultivation setup embedded into an automated liquid-handling system. The objective of this study was to establish an automated microscale method for upstream and downstream bioprocessing of α-IFN2b production by recombinant Escherichia coli. The extraction performance of α-IFN2b by osmotic shock using two different systems, automated microscale platform and manual extraction in MTP was compared. Results The amount of α-IFN2b extracted using automated microscale platform (49.2 μg/L) was comparable to manual osmotic shock method (48.8 μg/L), but the standard deviation was 2 times lower as compared to manual osmotic shock method. Fermentation parameters in MTP involving inoculum size, agitation speed, working volume and induction profiling revealed that the fermentation conditions for the highest production of α-IFN2b (85.5 μg/L) was attained at inoculum size of 8%, working volume of 40% and agitation speed of 1000 rpm with induction at 4 h after the inoculation. Conclusion Although the findings at MTP scale did not show perfect scalable results as compared to shake flask culture, but microscale technique development would serve as a convenient and low-cost solution in process optimization for recombinant protein.
Collapse
Affiliation(s)
- Joo Shun Tan
- Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Sahar Abbasiliasi
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Saeid Kadkhodaei
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yew Joon Tam
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Teck-Kim Tang
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yee-Ying Lee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Vital-Jacome M, Dochain D, Thalasso F. Microrespirometric model calibration applied to wastewater processes. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Velez-Suberbie ML, Betts JPJ, Walker KL, Robinson C, Zoro B, Keshavarz-Moore E. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization. Biotechnol Prog 2017; 34:58-68. [PMID: 28748655 PMCID: PMC5836883 DOI: 10.1002/btpr.2534] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Indexed: 11/16/2022]
Abstract
High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed‐batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled‐up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale‐up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58–68, 2018
Collapse
Affiliation(s)
- M Lourdes Velez-Suberbie
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, London, WC1E 6BT, U.K
| | - John P J Betts
- Sartorius Stedim Biotech, York Way, Royston, Herts, SG8 5WY, U.K
| | - Kelly L Walker
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, U.K
| | - Colin Robinson
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, U.K
| | - Barney Zoro
- Sartorius Stedim Biotech, York Way, Royston, Herts, SG8 5WY, U.K
| | - Eli Keshavarz-Moore
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, London, WC1E 6BT, U.K
| |
Collapse
|
9
|
Vital-Jacome M, Buitrón G, Moreno-Andrade I, Garcia-Rea V, Thalasso F. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source. JOURNAL OF HAZARDOUS MATERIALS 2016; 313:112-121. [PMID: 27054670 DOI: 10.1016/j.jhazmat.2016.02.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/20/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
In this study, a microrespirometric method was used, i.e., pulse respirometry in microreactors, to characterize mass transfer and biodegradation kinetics in aerobic granules. The experimental model was an aerobic granular sludge in a sequencing batch reactor (SBR) degrading synthetic wastewater containing 4-chlorophenol as the sole carbon source. After 15 days of acclimation, the SBR process degraded 4-chlorophenol at a removal rate of up to 0.9kg CODm(-3)d(-1), and the degradation kinetics were well described by the Haldane model. The microrespirometric method consisted of injecting pulses of 4-chlorophenol into the 24 wells of a microreactor system containing the SBR samples. From the respirograms obtained, the following five kinetic parameters were successfully determined during reactor operation: (i) Maximum specific oxygen uptake rate, (ii) substrate affinity constant, (iii) substrate inhibition constant, (iv) maximum specific growth rate, and (v) cell growth yield. Microrespirometry tests using granules and disaggregated granules allowed for the determination of apparent and intrinsic parameters, which in turn enabled the determination of the effectiveness factor of the granular sludge. It was concluded that this new high-throughput method has the potential to elucidate the complex biological and physicochemical processes of aerobic granular biosystems.
Collapse
Affiliation(s)
- Miguel Vital-Jacome
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360 México DF, México
| | - Germán Buitrón
- Laboratory for Research on Advanced Process for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76320, México
| | - Ivan Moreno-Andrade
- Laboratory for Research on Advanced Process for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76320, México
| | - Victor Garcia-Rea
- Laboratory for Research on Advanced Process for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76320, México
| | - Frederic Thalasso
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360 México DF, México.
| |
Collapse
|
10
|
The role of high-throughput mini-bioreactors in process development and process optimization for mammalian cell culture. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.15.22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|