1
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Photoreaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112252. [PMID: 34265548 DOI: 10.1016/j.jphotobiol.2021.112252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/21/2022]
Abstract
The photochemical reaction of photoactivated adenylate cyclase from cyanobacterium Microcoleus chthonoplastes PCC 7420 (mPAC), which consists of a Per-Arnt-Sim (PAS), a light‑oxygene-voltage (LOV), and an adenylate cyclase (AC) domain, was investigated mainly using the time-resolved transient grating method. An absorption spectral change associated with an adduct formation between its chromophore (flavin mononucleotide) and a cysteine residue was observed with a time constant of 0.66 μs. After this reaction, a significant diffusion coefficient (D)-change was observed with a time constant of 38 ms. The determined D-value was concentration-dependent indicating a rapid equilibrium between the dimer and tetramer. Combining the results of size exclusion chromatography and CD spectroscopy, we concluded that the photoinduced D-change was mainly attributed to the equilibrium shift from the dimer rich to the tetramer rich states upon light exposure. Since the reaction rate does not depend on concentration, the rate determining step of the tetramer formation is not the collision of proteins by diffusion, but a conformation change. The roles of the PAS and AC domains as well as the N- and C-terminal flanking helices of the LOV domain (A'α- and Jα-helices) were investigated using various truncated mutants. The PAS domain was found to be a strong dimerization site and is related to efficient signal transduction. It was found that simultaneous existence of the A'α- and Jα-helices in mPAC is important for the light-induced conformation change to lead the conformation change which induces the tetramer formation. The results suggest that the angle changes of the coiled-coil structures in the A'α and Jα-helices are essential for this conformation change. The reaction scheme of mPAC is proposed.
Collapse
|
3
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
4
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
5
|
Hu P, Guo R, Zhou M, Gärtner W, Zhao K. The Red‐/Green‐Switching GAF3 of Cyanobacteriochrome Slr1393 from
Synechocystis
sp. PCC6803 Regulates the Activity of an Adenylyl Cyclase. Chembiochem 2018; 19:1887-1895. [DOI: 10.1002/cbic.201800323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ping‐Ping Hu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Rui Guo
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Ming Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Wolfgang Gärtner
- Institute for Analytical ChemistryUniversity of Leipzig Linnéstrasse 3 04103 Leipzig Germany
| | - Kai‐Hong Zhao
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
6
|
Abstract
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences , University of Parma , Parco Area delle Scienze 7/A-43124 Parma , Italy
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center , New York , New York 10031 , United States.,Department of Chemistry and Biochemistry, City College of New York , New York , New York 10031 , United States.,Ph.D. Programs in Biochemistry, Chemistry, and Biology , The Graduate Center of the City University of New York , New York , New York 10016 , United States
| | - Andreas Möglich
- Lehrstuhl für Biochemie , Universität Bayreuth , 95447 Bayreuth , Germany.,Research Center for Bio-Macromolecules , Universität Bayreuth , 95447 Bayreuth , Germany.,Bayreuth Center for Biochemistry & Molecular Biology , Universität Bayreuth , 95447 Bayreuth , Germany
| |
Collapse
|
7
|
Tanwar M, Khera L, Haokip N, Kaul R, Naorem A, Kateriya S. Modulation of cyclic nucleotide-mediated cellular signaling and gene expression using photoactivated adenylyl cyclase as an optogenetic tool. Sci Rep 2017; 7:12048. [PMID: 28935957 PMCID: PMC5608697 DOI: 10.1038/s41598-017-12162-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/01/2017] [Indexed: 11/09/2022] Open
Abstract
Cyclic nucleotide signaling pathway plays a significant role in various biological processes such as cell growth, transcription, inflammation, in microbial pathogenesis, etc. Modulation of cyclic nucleotide levels by optogenetic tools has overcome certain limitations of studying transduction cascade by pharmacological agents and has allowed several ways to modulate biological processes in a spatiotemporal manner. Here, we have shown the optogenetic modulation of the cyclooxygenase 2 (Cox-2) gene expression and their downstream effector molecule (PGE2) in HEK-293T cells and the development process of Dictyostelium discoideum via modulating the cyclic nucleotide (cAMP) signaling pathway utilizing photoactivated adenylyl cyclases (PACs) as an optogenetic tool. Light-induced activation of PACs in HEK-293T cells increases the cAMP level that leads to activation of cAMP response element-binding protein (CREB) transcription factor and further upregulates downstream Cox-2 gene expression and their downstream effector molecule prostaglandin E2. In D. discoideum, the light-regulated increase in cAMP level affects the starvation-induced developmental process. These PACs could modulate the cAMP levels in a light-dependent manner and have a potential to control gene expression and their downstream effector molecules with varying magnitude. It would enable one to utilize PAC as a tool to decipher cyclic nucleotide mediated signaling pathway regulations and their mechanism.
Collapse
Affiliation(s)
- Meenakshi Tanwar
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Lohit Khera
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Nemneineng Haokip
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Rajeev Kaul
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aruna Naorem
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India. .,School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
8
|
Jansen V, Jikeli JF, Wachten D. How to control cyclic nucleotide signaling by light. Curr Opin Biotechnol 2017; 48:15-20. [PMID: 28288335 DOI: 10.1016/j.copbio.2017.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Abstract
Optogenetics allows to non-invasively manipulate cellular functions with spatio-temporal precision by combining genetic engineering with the control of protein function by light. Since the discovery of channelrhodopsin has pioneered the field, the optogenetic toolkit has been ever expanding and allows now not only to control neuronal activity by light, but rather a multitude of other cellular functions. One important application that has been established in recent years is the light-dependent control of second messenger signaling. The optogenetic toolkit now allows to control cyclic nucleotide-dependent signaling by light in vitro and in vivo.
Collapse
Affiliation(s)
- Vera Jansen
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Jan F Jikeli
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany
| | - Dagmar Wachten
- Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany; Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
9
|
Chen ZH, Singh R, Cole C, Lawal HM, Schilde C, Febrer M, Barton GJ, Schaap P. Adenylate cyclase A acting on PKA mediates induction of stalk formation by cyclic diguanylate at the Dictyostelium organizer. Proc Natl Acad Sci U S A 2017; 114:516-521. [PMID: 28057864 PMCID: PMC5255622 DOI: 10.1073/pnas.1608393114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordination of cell movement with cell differentiation is a major feat of embryonic development. The Dictyostelium stalk always forms at the organizing tip, by a mechanism that is not understood. We previously reported that cyclic diguanylate (c-di-GMP), synthesized by diguanylate cyclase A (DgcA), induces stalk formation. Here we used transcriptional profiling of dgca- structures to identify target genes for c-di-GMP, and used these genes to investigate the c-di-GMP signal transduction pathway. We found that knockdown of cAMP-dependent protein kinase (PKA) activity in prestalk cells reduced stalk gene induction by c-di-GMP, whereas PKA activation bypassed the c-di-GMP requirement for stalk gene expression. c-di-GMP caused a persistent increase in cAMP, which still occurred in mutants lacking the adenylate cyclases ACG or ACR, or the cAMP phosphodiesterase RegA. However, both inhibition of adenylate cyclase A (ACA) with SQ22536 and incubation of a temperature-sensitive ACA mutant at the restrictive temperature prevented c-di-GMP-induced cAMP synthesis as well as c-di-GMP-induced stalk gene transcription. ACA produces the cAMP pulses that coordinate Dictyostelium morphogenetic cell movement and is highly expressed at the organizing tip. The stalk-less dgca- mutant regained its stalk by expression of a light-activated adenylate cyclase from the ACA promoter and exposure to light, indicating that cAMP is also the intermediate for c-di-GMP in vivo. Our data show that the more widely expressed DgcA activates tip-expressed ACA, which then acts on PKA to induce stalk genes. These results explain why stalk formation in Dictyostelia always initiates at the site of the morphogenetic organizer.
Collapse
Affiliation(s)
- Zhi-Hui Chen
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Reema Singh
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Christian Cole
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hajara Mohammed Lawal
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Christina Schilde
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Melanie Febrer
- Division of Molecular Medicine, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Geoffrey J Barton
- Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Pauline Schaap
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
10
|
Losi A, Gärtner W. Solving Blue Light Riddles: New Lessons from Flavin-binding LOV Photoreceptors. Photochem Photobiol 2017; 93:141-158. [PMID: 27861974 DOI: 10.1111/php.12674] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/22/2016] [Indexed: 12/15/2022]
Abstract
Detection of blue light (BL) via flavin-binding photoreceptors (Fl-Blues) has evolved throughout all three domains of life. Although the main BL players, that is light, oxygen and voltage (LOV), blue light sensing using flavins (BLUF) and Cry (cryptochrome) proteins, have been characterized in great detail with respect to structure and function, still several unresolved issues at different levels of complexity remain and novel unexpected findings were reported. Here, we review the most prevailing riddles of LOV-based photoreceptors, for example: the relevance of water and/or small metabolites for the dynamics of the photocycle; molecular details of light-to-signal transduction events; the interplay of BL sensing by LOV domains with other environmental stimuli, such as BL plus oxygen-mediating photodamage and its impact on microbial lifestyles; the importance of the cell or chromophore redox state in determining the fate of BL-driven reactions; the evolutionary pathways of LOV-based BL sensing and associated functions through the diverse phyla. We will discuss major novelties emerged during the last few years on these intriguing aspects of LOV proteins by presenting paradigmatic examples from prokaryotic photosensors that exhibit the largest complexity and richness in associated functions.
Collapse
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences, University of Parma, Parma, Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| |
Collapse
|
11
|
Abstract
Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.
Collapse
|
12
|
Rodriguez-Centeno J, Sastre L. Biological Activity of the Alternative Promoters of the Dictyostelium discoideum Adenylyl Cyclase A Gene. PLoS One 2016; 11:e0148533. [PMID: 26840347 PMCID: PMC4739590 DOI: 10.1371/journal.pone.0148533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/20/2016] [Indexed: 12/01/2022] Open
Abstract
Amoebae of the Dictyostelium discoideum species form multicellular fruiting bodies upon starvation. Cyclic adenosine monophosphate (cAMP) is used as intercellular signalling molecule in cell-aggregation, cell differentiation and morphogenesis. This molecule is synthesized by three adenylyl cyclases, one of which, ACA, is required for cell aggregation. The gene coding for ACA (acaA) is transcribed from three different promoters that are active at different developmental stages. Promoter 1 is active during cell-aggregation, promoters 2 and 3 are active in prespore and prestalk tip cells at subsequent developmental stages. The biological relevance of acaA expression from each of the promoters has been studied in this article. The acaA gene was expressed in acaA-mutant cells, that do not aggregate, under control of each of the three acaA promoters. acaA expression under promoter 1 control induced cell aggregation although subsequent development was delayed, very small fruiting bodies were formed and cell differentiation genes were expressed at very low levels. Promoter 2-driven acaA expression induced the formation of small aggregates and small fruiting bodies were formed at the same time as in wild-type strains and differentiation genes were also expressed at lower levels. Expression of acaA from promoter 3 induced aggregates and fruiting bodies formation and their size and the expression of differentiation genes were more similar to that of wild-type cells. Expression of acaA from promoters 1 and 2 in AX4 cells also produced smaller structures. In conclusion, the expression of acaA under control of the aggregation-specific Promoter 1 is able to induce cell aggregation in acaA-mutant strains. Expression from promoters 2 and 3 also recovered aggregation and development although promoter 3 induced a more complete recovery of fruiting body formation.
Collapse
Affiliation(s)
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas CSIC/UAM, C/Arturo Duperier, 4, 28029, Madrid, Spain
- CIBERER, Valencia, Spain
- * E-mail:
| |
Collapse
|
13
|
Losi A, Mandalari C, Gärtner W. The Evolution and Functional Role of Flavin-based Prokaryotic Photoreceptors. Photochem Photobiol 2015; 91:1021-31. [DOI: 10.1111/php.12489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences; University of Parma; Parma Italy
| | - Carmen Mandalari
- Department of Physics and Earth Sciences; University of Parma; Parma Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion; Mülheim Germany
| |
Collapse
|
14
|
Hegemann P. Photoactivated cyclases: In memoriam Masakatsu Watanabe. Photochem Photobiol Sci 2015; 14:1781-6. [DOI: 10.1039/c5pp00233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In memoriamMasakatsu Watanabe.
Collapse
Affiliation(s)
- Peter Hegemann
- Institute of Biology
- Experimental Biophysics
- Humboldt-Universität zu Berlin
- 10115 Berlin
- Germany
| |
Collapse
|
15
|
Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life (Basel) 2014; 4:745-69. [PMID: 25411927 PMCID: PMC4284465 DOI: 10.3390/life4040745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
Second messengers are intracellular substances regulated by specific external stimuli globally known as first messengers. Cells rely on second messengers to generate rapid responses to environmental changes and the importance of their roles is becoming increasingly realized in cellular signaling research. Cyanobacteria are photooxygenic bacteria that inhabit most of Earth's environments. The ability of cyanobacteria to survive in ecologically diverse habitats is due to their capacity to adapt and respond to environmental changes. This article reviews known second messenger-controlled physiological processes in cyanobacteria. Second messengers used in these systems include the element calcium (Ca2+), nucleotide-based guanosine tetraphosphate or pentaphosphate (ppGpp or pppGpp, represented as (p)ppGpp), cyclic adenosine 3',5'-monophosphate (cAMP), cyclic dimeric GMP (c-di-GMP), cyclic guanosine 3',5'-monophosphate (cGMP), and cyclic dimeric AMP (c-di-AMP), and the gaseous nitric oxide (NO). The discussion focuses on processes central to cyanobacteria, such as nitrogen fixation, light perception, photosynthesis-related processes, and gliding motility. In addition, we address future research trajectories needed to better understand the signaling networks and cross talk in the signaling pathways of these molecules in cyanobacteria. Second messengers have significant potential to be adapted as technological tools and we highlight possible novel and practical applications based on our understanding of these molecules and the signaling networks that they control.
Collapse
|