1
|
Wu P, Tao Q, Liu Y, Zeng C, Li Y, Yan X. Efficient secretion of mussel adhesion proteins using a chaperone protein Spy as fusion tag in Bacillus subtilis. Biotechnol J 2023; 18:e2200582. [PMID: 37357718 DOI: 10.1002/biot.202200582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Mussel foot proteins (Mfps) are considered as remarkable materials due to their extraordinary adhesive capability. Recombinant expression is an ideal way to synthesis these proteins at large scale. However, secretory expression of Mfps into culture medium has not been achieved in a heterologous host. METHODS AND RESULTS Here, to realize the secretion of Mfp3 and Mfp5 in Bacillus subtilis, signal peptide screening was first performed. Minimal Mfp3-6×His was targeted into the growth medium with AmyE signal peptide. We found that a small chaperone protein Spy was secreted efficiently in B. subtilis, and the fusion proteins Spy-Mfp3-6×His and Spy-Mfp5-6×His could also be delivered into growth medium well. The yield of Spy-Mfp3-6×His and Spy-Mfp5-6×His reached 255 and 119 mg L-1 at shake flask conditions, respectively. Mfp3-6×His and Mfp5-6×His were finally purified via TEV protease cleavage and NTA affinity chromatography. CONCLUSION Mfp3-6×His and Mfp5-6×His could be efficiently secreted using a chaperone protein Spy as fusion tag in B. subtilis.
Collapse
Affiliation(s)
- Panpan Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Qing Tao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yuxuan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Caiting Zeng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Yu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Lee H, Park G, Kim S, Son B, Joo J, Park HH, Park TH. Enhancement of anti-tumor activity in melanoma using arginine deiminase fused with 30Kc19α protein. Appl Microbiol Biotechnol 2022; 106:7531-7545. [PMID: 36227339 DOI: 10.1007/s00253-022-12218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
Arginine deiminase (ADI) is a microbial-derived enzyme which catalyzes the conversion of L-arginine into L-citrulline. ADI originating from Mycoplasma has been reported to present anti-tumor activity against arginine-auxotrophic tumors, including melanoma. Melanoma cells are sensitive to arginine depletion due to reduced expression of argininosuccinate synthase 1 (ASS1), a key enzyme for arginine biosynthesis. However, clinical applications of recombinant ADI for melanoma treatment present some limitations. Since recombinant ADI is not human-derived, it shows instability, proteolytic degradation, and antigenicity in human serum. In addition, there is a problem of drug resistance issue due to the intracellular expression of once-silenced ASS1. Moreover, recombinant ADI proteins are mainly expressed as inclusion body forms in Escherichia coli and require a time-consuming refolding process to turn them back into active form. Herein, we propose fusion of recombinant ADI from Mycoplasma hominis and 30Kc19α, a cell-penetrating protein which also increases stability and soluble expression of cargo proteins, to overcome these problems. We inserted matrix metalloproteinase-2 cleavable linker between ADI and 30Kc19α to increase enzyme activity in melanoma cells. Compared to ADI, ADI-LK-30Kc19α showed enhanced solubility, stability, and cell penetration. The fusion protein demonstrated selective cytotoxicity and reduced drug resistance in melanoma cells, thus would be a promising strategy for the improved efficacy in melanoma treatment. KEY POINTS: • Fusion of ADI with 30Kc19α enhances soluble expression and productivity of recombinant ADI in E. coli • 30Kc19α protects ADI from the proteolytic degradation by shielding effect, helping ADI to remain active • Intracellular delivery of ADI by 30Kc19α overcomes ADI resistance in melanoma cells by degrading intracellularly expressed arginine.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Geunhwa Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Seulha Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea. .,Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea.
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea. .,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
An Intrinsically Disordered Peptide Tag that Confers an Unusual Solubility to Aggregation-Prone Proteins. Appl Environ Microbiol 2022; 88:e0009722. [PMID: 35285717 DOI: 10.1128/aem.00097-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is a high demand for the production of recombinant proteins in Escherichia coli for biotechnological applications, but their production is still limited by their insolubility. Fusion tags have been successfully used to enhance the solubility of aggregation-prone proteins; however, smaller and more powerful tags are desired for increasing the yield and quality of target proteins. Here, the NEXT tag, a 53-amino-acid-long solubility enhancer, is described. The NEXT tag showed outstanding ability to improve both in vivo and in vitro solubilities, with minimal effect on passenger proteins. The C-terminal region of the tag was mostly responsible for in vitro solubility, while the N-terminal region was essential for in vivo soluble expression. The NEXT tag appeared to be intrinsically disordered and seemed to exclude neighboring molecules and prevent protein aggregation by acting as an entropic bristle. This novel peptide tag should have general use as a fusion partner to increase the yield and quality of difficult-to-express proteins. IMPORTANCE Production of recombinant proteins in Escherichia coli still suffers from the insolubility problem. Conventional solubility enhancers with large sizes, represented by maltose-binding protein (MBP), have remained the first-choice tags; however, the success of the soluble expression of tagged proteins is largely unpredictable. In addition, the large tags can negatively affect the function of target proteins. In this work, the NEXT tag, an intrinsically disordered peptide, was introduced as a small but powerful alternative to MBP. The NEXT tag could significantly improve both the expression level and the solubility of target proteins, including a thermostable carbonic anhydrase and a polyethylene terephthalate (PET)-degrading enzyme that are remarkable enzymes for environmental bioremediation.
Collapse
|
4
|
Microbial arginine deiminase: A multifaceted green catalyst in biomedical sciences. Int J Biol Macromol 2022; 196:151-162. [PMID: 34920062 DOI: 10.1016/j.ijbiomac.2021.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Arginine deiminase is a well-recognized guanidino-modifying hydrolase that catalyzes the conversion of L-arginine to citrulline and ammonia. Their biopotential to regress tumors via amino acid deprivation therapy (AADT) has been well established. PEGylated formulation of recombinant Mycoplasma ADI is in the last-phase clinical trials against various arginine-auxotrophic cancers like hepatocellular carcinoma, melanoma, and mesothelioma. Recently, ADIs have attained immense importance in several other biomedical applications, namely treatment of Alzheimer's, as an antiviral drug, bioproduction of nutraceutical L-citrulline and bio-analytics involving L-arginine detection. Considering the wide applications of this biodrug, the demand for ADI is expected to escalate several-fold in the coming years. However, the sustainable production aspects of the enzyme with improved pharmacokinetics is still limited, creating bottlenecks for effective biopharmaceutical development. To circumvent the lacunae in enzyme production with appropriate paradigms of 'quality-by-design' an explicit overview of its properties with 'biobetter' formulations strategies are required. Present review provides an insight into all the potential biomedical applications of ADI along with the improvements required for its reach to clinics. Recent research advances with special emphasis on the development of ADI as a 'biobetter' enzyme have also been comprehensively elaborated.
Collapse
|
5
|
Silva FSR, Santos SPO, Meyer R, Silva ES, Pinheiro CS, Alcantara-Neves NM, Pacheco LGC. In vivo cleavage of solubility tags as a tool to enhance the levels of soluble recombinant proteins in Escherichia coli. Biotechnol Bioeng 2021; 118:4159-4167. [PMID: 34370304 DOI: 10.1002/bit.27912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Recombinant proteins are generally fused with solubility enhancer tags to improve the folding and solubility of the target protein of interest. However, the fusion protein strategy usually requires expensive proteases to perform in vitro proteolysis and additional chromatographic steps to obtain tag-free recombinant proteins. Expression systems based on intracellular processing of solubility tags in Escherichia coli, through co-expression of a site-specific protease, simplify the recombinant protein purification process, and promote the screening of molecules that fail to remain soluble after tag removal. High yields of soluble target proteins have already been achieved using these protease co-expression systems. Herein, we review approaches for controlled intracellular processing systems tailored to produce soluble untagged proteins in E. coli. We discuss the different genetic systems available for intracellular processing of recombinant proteins regarding system design features, advantages, and limitations of the various strategies.
Collapse
Affiliation(s)
- Filipe S R Silva
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Sara P O Santos
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Roberto Meyer
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Eduardo S Silva
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Carina S Pinheiro
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Neuza M Alcantara-Neves
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Luis G C Pacheco
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Department of Biotechnology, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
6
|
Ruan A, Ren C, Quan S. Conversion of the molecular chaperone Spy into a novel fusion tag to enhance recombinant protein expression. J Biotechnol 2020; 307:131-138. [DOI: 10.1016/j.jbiotec.2019.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
|
7
|
Silva FSR, Santos SPO, Meyer R, Alcantara-Neves NM, Pinheiro CS, Pacheco LGC. Single-Input Regulatory Cascade for in vivo Removal of the Solubility Tag in Fusion Recombinant Proteins Produced by Escherichia coli. Front Bioeng Biotechnol 2019; 7:200. [PMID: 31482090 PMCID: PMC6710347 DOI: 10.3389/fbioe.2019.00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Solubility tags are commonly fused to target recombinant proteins to enhance their solubility and stability. In general, these protein tags must be removed to avoid misfolding of the partner protein and to allow for downstream applications. Nevertheless, in vitro tag removal increases process complexity and costs. Herein, we describe a synthetic biology-based strategy to permit in vivo removal of a solubility tag (EDA, KDPG aldolase), through co-expression of the fusion recombinant protein (EDA-EGFP) and the tag-cleaving protease (TEVp), in a controlled manner. Basically, the system uses three repressor proteins (LacI, cI434, and TetR) to regulate the expressions of EDA-EGFP and TEVp, in a regulatory cascade that culminates with the release of free soluble target protein (EGFP), following a single chemical induction by IPTG. The system worked consistently when all biological parts were cloned in a single plasmid, pSolubility(SOL)A (7.08 Kb, AmpR), and transformed in Escherichia coli Rosetta (DE3) or BL21(DE3) strains. Total soluble recombinant protein yield (EDA-EGFP + free EGFP) was ca. 272.0 ± 60.1 μg/mL of culture, following IMAC purification; free EGFP composed great part (average = 46.5%; maximum = 67.3%) of the total purified protein fraction and was easily separated from remaining fusion EDA-EGFP (53 KDa) through filtration using a 50 KDa cut-off centrifugal filter.
Collapse
Affiliation(s)
- Filipe S R Silva
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Sara P O Santos
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Roberto Meyer
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Neuza M Alcantara-Neves
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Carina S Pinheiro
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luis G C Pacheco
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
8
|
Zhang XF, Ai YH, Xu Y, Yu XW. High-level expression of Aspergillus niger lipase in Pichia pastoris: Characterization and gastric digestion in vitro. Food Chem 2019; 274:305-313. [DOI: 10.1016/j.foodchem.2018.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
|
9
|
Zarei M, Rahbar MR, Morowvat MH, Nezafat N, Negahdaripour M, Berenjian A, Ghasemi Y. Arginine Deiminase: Current Understanding and Applications. Recent Pat Biotechnol 2019; 13:124-136. [PMID: 30569861 DOI: 10.2174/1872208313666181220121400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Arginine deiminase (ADI), an arginine catabolizing enzyme, is considered as an anti-tumor agent for the treatment of arginine auxotrophic cancers. However, some obstacles limit its clinical applications. OBJECTIVE This review will summarize the clinical applications of ADI, from a brief history to its limitations, and will discuss the different ways to deal with the clinical limitations. METHOD The structure analysis, cloning, expression, protein engineering and applications of arginine deiminase enzyme have been explained in this review. CONCLUSION Recent patents on ADI are related to ADI engineering to increase its efficacy for clinical application. The intracellular delivery of ADI and combination therapy seem to be the future strategies in the treatment of arginine auxotrophic cancers. Applying ADIs with optimum features from different sources and or ADI engineering, are promising strategies to improve the clinical application of ADI.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science & Engineering, The University of Waikato, Hamilton, New Zealand
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Bernier SC, Morency LP, Najmanovich R, Salesse C. Identification of an alternative translation initiation site in the sequence of the commonly used Glutathione S-Transferase tag. J Biotechnol 2018; 286:14-16. [DOI: 10.1016/j.jbiotec.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022]
|
11
|
Evaluation of rice tetraticopeptide domain-containing thioredoxin as a novel solubility-enhancing fusion tag in Escherichia coli. J Biosci Bioeng 2018; 125:160-167. [DOI: 10.1016/j.jbiosc.2017.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
12
|
Cheng C, Wu S, Cui L, Wu Y, Jiang T, He B. A novel Ffu fusion system for secretory expression of heterologous proteins in Escherichia coli. Microb Cell Fact 2017; 16:231. [PMID: 29268791 PMCID: PMC5740907 DOI: 10.1186/s12934-017-0845-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2017] [Indexed: 11/13/2022] Open
Abstract
Background The high level of excretion and rapid folding ability of β-fructofuranosidase (β-FFase) in Escherichia coli has suggested that β-FFase from Arthrobacter arilaitensis NJEM01 can be developed as a fusion partner. Methods Based on the modified Wilkinson and Harrison algorithm and the preliminary verification of the solubility-enhancing ability of β-FFase truncations, three β-FFase truncations (i.e., Ffu209, Ffu217, and Ffu312) with a native signal peptide were selected as novel Ffu fusion tags. Four difficult-to-express protein models; i.e., CARDS TX, VEGFR-2, RVs and Omp85 were used in the assessment of Ffu fusion tags. Results The expression levels and solubility of each protein were markedly enhanced by the Ffu fusion system. Each protein had a favorable Ffu tag. The Ffu fusion tags performed preferably when compared with the well-known fusion tags MBP and NusA. Strikingly, it was confirmed that Ffu fusion proteins were secreted into the periplasm by the periplasmic analysis and N-amino acid sequence analysis. Further, efficient excretion of HV3 with defined anti-thrombin activity was obtained when it was fused with the Ffu312 tag. Moreover, HV3 remained soluble and demonstrated notable anti-thrombin activity after the removal of the Ffu312 tag by enterokinase. Conclusions Observations from this work not only complements fusion technologies, but also develops a novel and effective secretory system to solve key issues that include inclusion bodies and degradation when expressing heterologous proteins in E. coli, especially for proteins that require disulfide bond formation, eukaryotic-secreted proteins, and membrane-associated proteins. Electronic supplementary material The online version of this article (10.1186/s12934-017-0845-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Shanshan Wu
- Wuxi AppTec (Suzhou) Testing Technology Co.,Ltd., 1336 Wuzhong Avenue, Xinzhiyuan Building B, Wuzhong District, Suzhou, 215104, Jiangsu, China
| | - Lupeng Cui
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Yulu Wu
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Bingfang He
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China. .,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
13
|
Chen L, Sun P, Li Y, Yan M, Xu L, Chen K, Ouyang P. A fusion protein strategy for soluble expression of Stevia glycosyltransferase UGT76G1 in Escherichia coli. 3 Biotech 2017; 7:356. [PMID: 29038773 DOI: 10.1007/s13205-017-0943-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
The UDP-glucosyltransferase UGT76G1 from Stevia rebaudiana converts stevioside to rebaudioside A via a one-step glycosylation reaction, which increases the amount of sweet-tasting rebaudioside A and decreases the amount of stevioside that has a bitter aftertaste. This enzyme could, therefore, conceivably be used to improve the organoleptic properties of steviol glycosides and offer a cost-effective preparation of high-purity rebaudioside A. Producing soluble enzymes by overexpression is a prerequisite for large-scale biocatalysis. However, most of the UGT76G1 overexpressed in Escherichia coli is in inclusion bodies. In this study, three N-terminal fusion partners, 3'-phosphoadenosine-5'-phosphatase (CysQ), 2-keto-3-deoxy-6-phosphogluconate aldolase (EDA) and N-utilisation substance A (NusA), were tested to improve UGT76G1 expression and solubility in E. coli. Compared with the fusion-free protein, the solubility of UGT76G1 was increased 40% by fusion with CysQ, and the glucosyltransferase activity of the crude extract was increased 82%. This successful CysQ fusion strategy could be applied to enhance the expression and solubility of other plant-derived glucosyltransferases and presumably other unrelated proteins in the popular, convenient and cost-effective E. coli host.
Collapse
Affiliation(s)
- Liangliang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Ping Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
- Yichang Key Laboratory of Biocatalysis, China Three Gorges University, Yichang, 443002 China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Lin Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| |
Collapse
|
14
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
15
|
The promises and challenges of fusion constructs in protein biochemistry and enzymology. Appl Microbiol Biotechnol 2016; 100:8273-81. [PMID: 27541749 DOI: 10.1007/s00253-016-7795-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023]
Abstract
Fusion constructs are used to improve the properties of or impart novel functionality to proteins for biotechnological applications. The biochemical characteristics of enzymes or functional proteins optimized by fusion include catalytic efficiency, stability, activity, expression, secretion, and solubility. In this review, we summarize the parameters of enzymes or functional proteins that can be modified by fusion constructs. For each parameter, fusion strategies and molecular partners are examined using examples from recent studies. Future prospects in this field are also discussed. This review is expected to increase interest in and advance fusion strategies for optimization of enzymes and other functional proteins.
Collapse
|
16
|
Han MJ. Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments. J Biosci Bioeng 2016; 122:1-9. [DOI: 10.1016/j.jbiosc.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 11/26/2022]
|
17
|
High-level expression of prolyl endopeptidase in Pichia pastoris using PLA 2 as a fusion partner. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|