1
|
Wang QQ, Song J, Wei D. Origin of Chemoselectivity of Halohydrin Dehalogenase-Catalyzed Epoxide Ring-Opening Reactions. J Chem Inf Model 2024; 64:4530-4541. [PMID: 38808649 DOI: 10.1021/acs.jcim.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
By performing molecular dynamics (MD), quantum mechanical/molecular mechanical (QM/MM) calculations, and QM cluster calculations, the origin of chemoselectivity of halohydrin dehalogenase (HHDH)-catalyzed ring-opening reactions of epoxide with the nucleophilic reagent NO2- has been explored. Four possible chemoselective pathways were considered, and the computed results indicate that the pathway associated with the nucleophilic attack on the Cα position of epoxide by NO2- is most energetically favorable and has an energy barrier of 12.9 kcal/mol, which is close to 14.1 kcal/mol derived from experimental kinetic data. A hydrogen bonding network formed by residues Ser140, Tyr153, and Arg157 can strengthen the electrophilicity of the active site of the epoxide substrate to affect chemoselectivity. To predict the energy barrier trends of the chemoselective transition states, multiple analyses including distortion analysis and electrophilic Parr function (Pk+) analysis were carried out with or without an enzyme environment. The obtained insights should be valuable for the rational design of enzyme-catalyzed and biomimetic organocatalytic epoxide ring-opening reactions with special chemoselectivity.
Collapse
Affiliation(s)
- Qian-Qian Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Jinshuai Song
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
2
|
Currin A, Parker S, Robinson CJ, Takano E, Scrutton NS, Breitling R. The evolving art of creating genetic diversity: From directed evolution to synthetic biology. Biotechnol Adv 2021; 50:107762. [PMID: 34000294 PMCID: PMC8299547 DOI: 10.1016/j.biotechadv.2021.107762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022]
Abstract
The ability to engineer biological systems, whether to introduce novel functionality or improved performance, is a cornerstone of biotechnology and synthetic biology. Typically, this requires the generation of genetic diversity to explore variations in phenotype, a process that can be performed at many levels, from single molecule targets (i.e., in directed evolution of enzymes) to whole organisms (e.g., in chassis engineering). Recent advances in DNA synthesis technology and automation have enhanced our ability to create variant libraries with greater control and throughput. This review highlights the latest developments in approaches to create such a hierarchy of diversity from the enzyme level to entire pathways in vitro, with a focus on the creation of combinatorial libraries that are required to navigate a target's vast design space successfully to uncover significant improvements in function.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.
| | - Steven Parker
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Christopher J Robinson
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Nigel S Scrutton
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
3
|
Tang XL, Ye GY, Wan XY, Li HW, Zheng RC, Zheng YG. Rational design of halohydrin dehalogenase for efficient chiral epichlorohydrin production with high activity and enantioselectivity in aqueous-organic two-phase system. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Meng Q, Capra N, Palacio CM, Lanfranchi E, Otzen M, van Schie LZ, Rozeboom HJ, Thunnissen AMWH, Wijma HJ, Janssen DB. Robust ω-Transaminases by Computational Stabilization of the Subunit Interface. ACS Catal 2020; 10:2915-2928. [PMID: 32953233 PMCID: PMC7493286 DOI: 10.1021/acscatal.9b05223] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from Pseudomonas jessenii. A large number of surface-located point mutations and mutations predicted to stabilize the subunit interface were examined. Experimental screening revealed that 10 surface mutations out of 172 tested were indeed stabilizing (6% success), whereas testing 34 interface mutations gave 19 hits (56% success). Both the extent of stabilization and the spatial distribution of stabilizing mutations showed that the subunit interface was critical for stability. After mutations were combined, 2 very stable variants with 4 and 6 mutations were obtained, which in comparison to wild type (T m app = 62 °C) displayed T m app values of 80 and 85 °C, respectively. These two variants were also 5-fold more active at their optimum temperatures and tolerated high concentrations of isopropylamine and cosolvents. This allowed conversion of 100 mM acetophenone to (S)-1-phenylethylamine (>99% enantiomeric excess) with high yield (92%, in comparison to 24% with the wild-type transaminase). Crystal structures mostly confirmed the expected structural changes and revealed that the most stabilizing mutation, I154V, featured a rarely described stabilization mechanism: namely, removal of steric strain. The results show that computational interface redesign can be a rapid and powerful strategy for transaminase stabilization.
Collapse
Affiliation(s)
- Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nikolas Capra
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Cyntia M. Palacio
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elisa Lanfranchi
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luc Z. van Schie
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriëtte J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Currin A, Kwok J, Sadler JC, Bell EL, Swainston N, Ababi M, Day P, Turner NJ, Kell DB. GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries. ACS Synth Biol 2019; 8:1371-1378. [PMID: 31132850 PMCID: PMC7007284 DOI: 10.1021/acssynbio.9b00063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Directed evolution requires the creation of genetic diversity and subsequent screening or selection for improved variants. For DNA mutagenesis, conventional site-directed methods implicitly utilize the Boolean AND operator (creating all mutations simultaneously), producing a combinatorial explosion in the number of genetic variants as the number of mutations increases. We introduce GeneORator, a novel strategy for creating DNA libraries based on the Boolean logical OR operator. Here, a single library is divided into many subsets, each containing different combinations of the desired mutations. Consequently, the effect of adding more mutations on the number of genetic combinations is additive (Boolean OR logic) and not exponential (AND logic). We demonstrate this strategy with large-scale mutagenesis studies, using monoamine oxidase-N ( Aspergillus niger) as the exemplar target. First, we mutated every residue in the secondary structure-containing regions (276 out of a total 495 amino acids) to screen for improvements in kcat. Second, combinatorial OR-type libraries permitted screening of diverse mutation combinations in the enzyme active site to detect activity toward novel substrates. In both examples, OR-type libraries effectively reduced the number of variants searched up to 1010-fold, dramatically reducing the screening effort required to discover variants with improved and/or novel activity. Importantly, this approach enables the screening of a greater diversity of mutation combinations, accessing a larger area of a protein's sequence space. OR-type libraries can be applied to any biological engineering objective requiring DNA mutagenesis, and the approach has wide ranging applications in, for example, enzyme engineering, antibody engineering, and synthetic biology.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jane Kwok
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Joanna C. Sadler
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Elizabeth L. Bell
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Neil Swainston
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Maria Ababi
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- School of Computer Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Philip Day
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nicholas J. Turner
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Douglas B. Kell
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
- School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
6
|
Wang X, Xie Z, Yan J, He X, Liu W, Sun Y. Enhancement of the thermostability of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by constructing a combinatorial smart library. Int J Biol Macromol 2019; 130:19-23. [DOI: 10.1016/j.ijbiomac.2019.02.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 11/17/2022]
|
7
|
Sun Z, Liu Q, Qu G, Feng Y, Reetz MT. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chem Rev 2019; 119:1626-1665. [PMID: 30698416 DOI: 10.1021/acs.chemrev.8b00290] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
8
|
Wan N, Tian J, Wang H, Tian M, He Q, Ma R, Cui B, Han W, Chen Y. Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorg Chem 2018; 81:529-535. [PMID: 30245234 DOI: 10.1016/j.bioorg.2018.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 02/05/2023]
Abstract
Halohydrin dehalogenases are remarkable enzymes which possess promiscuous catalytic activity and serve as potential biocatalysts for the synthesis of chiral halohydrins, epoxides and β-substituted alcohols. The enzyme HheC exhibits a highly R enantioselectivity in the processes of dehalogenation of vicinal halohydrins and ring-opening of epoxides, which attracts more attentions in organic synthesis. Recently dozens of novel potential halohydrin dehalogenases have been identified by gene mining, however, most of the characterized enzymes showed low stereoselectivity. In this study, a novel halohydrin dehalogenase of HheA10 from Tsukamurella sp. 1534 has been heterologously expressed, purified and characterized. Substrate spectrum and kinetic resolution studies indicated the HheA10 was a highly S enantioselective enzyme toward several halohydrins, which produced the corresponding epoxides with the ee (enantiomeric excess) and E values up to >99% and >200 respectively. Our results revealed the HheA10 was a promising biocatalyst for the synthesis of enantiopure aromatic halohydrins and epoxides via enzymatic kinetic resolution of racemic halohydrins. What's more important, the HheA10 as the first individual halohydrin dehalogenase with the highly S enantioselectivity provides a complementary enantioselectivity to the HheC.
Collapse
Affiliation(s)
- Nanwei Wan
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Jiawei Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Huihui Wang
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Meiting Tian
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qing He
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Ran Ma
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Baodong Cui
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Wenyong Han
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yongzheng Chen
- Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
9
|
Arabnejad H, Dal Lago M, Jekel PA, Floor RJ, Thunnissen AMWH, Terwisscha van Scheltinga AC, Wijma HJ, Janssen DB. A robust cosolvent-compatible halohydrin dehalogenase by computational library design. Protein Eng Des Sel 2017; 30:173-187. [PMID: 27999093 DOI: 10.1093/protein/gzw068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/02/2016] [Indexed: 01/05/2023] Open
Abstract
To improve the applicability of halohydrin dehalogenase as a catalyst for reactions in the presence of organic cosolvents, we explored a computational library design strategy (Framework for Rapid Enzyme Stabilization by Computational libraries) that involves discovery and in silico evaluation of stabilizing mutations. Energy calculations, disulfide bond predictions and molecular dynamics simulations identified 218 point mutations and 35 disulfide bonds with predicted stabilizing effects. Experiments confirmed 29 stabilizing point mutations, most of which were located in two distinct regions, whereas introduction of disulfide bonds was not effective. Combining the best mutations resulted in a 12-fold mutant (HheC-H12) with a 28°C higher apparent melting temperature and a remarkable increase in resistance to cosolvents. This variant also showed a higher optimum temperature for catalysis while activity at low temperature was preserved. Mutant H12 was used as a template for the introduction of mutations that enhance enantioselectivity or activity. Crystal structures showed that the structural changes in the H12 mutant mostly agreed with the computational predictions and that the enhanced stability was mainly due to mutations that redistributed surface charges and improved interactions between subunits, the latter including better interactions of water molecules at the subunit interfaces.
Collapse
Affiliation(s)
- Hesam Arabnejad
- Biotransformation and Biocatalysis, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco Dal Lago
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Peter A Jekel
- Biotransformation and Biocatalysis, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Robert J Floor
- Biotransformation and Biocatalysis, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W H Thunnissen
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anke C Terwisscha van Scheltinga
- Laboratory of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Wu Z, Deng W, Tong Y, Liao Q, Xin D, Yu H, Feng J, Tang L. Exploring the thermostable properties of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by a combinatorial directed evolution strategy. Appl Microbiol Biotechnol 2017; 101:3201-3211. [PMID: 28074221 DOI: 10.1007/s00253-017-8090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 01/26/2023]
Abstract
As a crucial factor for biocatalysts, protein thermostability often arises from a combination of factors that are often difficult to rationalize. In this work, the thermostable nature of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) was systematically explored using a combinatorial directed evolution approach. For this, a mutagenesis library of HheC mutants was first constructed using error-prone PCR with low mutagenesis frequency. After screening approximately 2000 colonies, six mutants with eight mutation sites were obtained. Those mutation sites were subsequently combined by adopting several rounds of iterative saturation mutagenesis (ISM) approach. After four rounds of saturation mutagenesis, one best mutant ISM-4 with a 3400-fold improvement in half-life (t 1/2) inactivation at 65 °C, 18 °C increase in apparent T m value, and 20 °C increase in optimum temperature was obtained, compared to wild-type HheC. To the best of our knowledge, the mutant represents the most thermostable HheC variant reported up to now. Moreover, the mutant was as active as wild-type enzyme for the substrate 1,3-dichloro-2-propanol, and they remained most enantioselectivity of wild-type enzyme in the kinetic resolution of rac-2-chloro-1-phenolethanol, exhibiting a great potential for industrial applications. Our structural investigation highlights that surface loop regions are hot spots for modulating the thermostability of HheC, the residues located at these regions contribute to the thermostability of HheC in a cooperative way, and protein rigidity and oligomeric interface connections contribute to the thermostability of HheC. All of these essential factors could be used for further design of an even more thermostable HheC, which, in turn, could greatly facilitate the application of the enzyme as a biocatalyst.
Collapse
Affiliation(s)
- Zhiyun Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Wenfeng Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Yapei Tong
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Qian Liao
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Dongmin Xin
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China
| | - Huashun Yu
- Research and Development Center, Angel Yeast Co., Ltd., Yichang, China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, No. 4, Section 2, North Jianshe Road, Chengdu, 610054, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
11
|
Recent advances on halohydrin dehalogenases-from enzyme identification to novel biocatalytic applications. Appl Microbiol Biotechnol 2016; 100:7827-39. [PMID: 27502414 PMCID: PMC4989007 DOI: 10.1007/s00253-016-7750-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 10/25/2022]
Abstract
Halohydrin dehalogenases are industrially relevant enzymes that catalyze the reversible dehalogenation of vicinal haloalcohols with formation of the corresponding epoxides. In the reverse reaction, also other negatively charged nucleophiles such as azide, cyanide, or nitrite are accepted besides halides to open the epoxide ring. Thus, novel C-N, C-C, or C-O bonds can be formed by halohydrin dehalogenases, which makes them attractive biocatalysts for the production of various β-substituted alcohols. Despite the fact that only five individual halohydrin dehalogenase enzyme sequences have been known until recently enabling their heterologous production, a large number of different biocatalytic applications have been reported using these enzymes. The recent characterization of specific sequence motifs has facilitated the identification of novel halohydrin dehalogenase sequences available in public databases and has largely increased the number of recombinantly available enzymes. These will help to extend the biocatalytic repertoire of this enzyme family and to foster novel biotechnological applications and developments in the future. This review gives a general overview on the halohydrin dehalogenase enzyme family and their biochemical properties and further focuses on recent developments in halohydrin dehalogenase biocatalysis and protein engineering.
Collapse
|
12
|
Wang X, Han S, Yang Z, Tang L. Improvement of the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by engineering C-terminal amino acids. J Biotechnol 2015; 212:92-8. [DOI: 10.1016/j.jbiotec.2015.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
|