1
|
Schäfer L, Mikowsky N, Meinert-Berning C, Steinbüchel A. Unveiling steps of the TDP degradation pathway in Variovorax paradoxus TBEA6. Enzyme Microb Technol 2022; 160:110095. [PMID: 35810625 DOI: 10.1016/j.enzmictec.2022.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Since the role of biobased plastics increases every year, the search for alternatives to petrol-based polymers is very important. Variovorax paradoxus TBEA6 is able to grow with 3,3'-thiodipropionic acid (TDP) as sole source for carbon and energy. TDP can be used as a precursor substrate for the synthesis of polythioesters (PTE). To increase the feasibility of PTE synthesis, a good understanding of the degradation pathway of TDP in V. paradoxus TBEA6 is essential. Therefore, two putative 3-hydroxyisobutyryl-CoA hydrolases (VPARA_03110 & VPARA_05510) and two putative 3-hydroxypropionate dehydrogenases (VPARA_41140 & VPARA_54550) were investigated in this study. The deletion mutant V. paradoxus ∆VPARA_05510 showed a TDP-negative phenotype during growth experiments. The ability to grow with TDP as sole carbon source was successfully restored by complementation. Supernatant analysis revealed that the deletion mutant did not metabolize TDP or 3MP anymore. A specific enzyme activity up to 0.032 U/mg for the purified 3-hydroxyisobutyryl-CoA hydrolase VPARA_05510 was determined. A shift in the proteins (VPARA_54550) melting temperature of 6 °C with 2000 µM 3HP in comparison to protein without ligand was observed during thermal shift assays with the putative 3-hydroxypropionate dehydrogenase.
Collapse
Affiliation(s)
- Lukas Schäfer
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Nadine Mikowsky
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany; Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Reddy MV, Steinbüchel A. 3,3'-Thiodipropionic acid (TDP), a possible precursor for the synthesis of polythioesters: identification of TDP transport proteins in Variovorax paradoxus TBEA6. Appl Microbiol Biotechnol 2021; 105:3733-3743. [PMID: 33900422 PMCID: PMC8102459 DOI: 10.1007/s00253-021-11294-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
3,3'-Thiodipropionic acid (TDP) is an antioxidant, which can be used as precursor carbon source to synthesize polythioesters. The bacterium Variovorax paradoxus TBEA6 strain can use TDP as a single source of carbon and energy. In the present study, experiments were carried out to identify proteins involved in the transport of TDP into the cells of strain TBEA6. Hence, eight putative tctC genes, which encode for the TctC proteins, were amplified from genomic DNA of TBEA6 strain using polymerase chain reaction and expressed in E. coli BL21 cells. Cells were grown in auto-induction medium, and protein purification was done using His Spin Trap affinity columns. Purity and molecular weight of each protein were confirmed by SDS-PAGE analysis. Protein-ligand interactions were monitored in thermoshift assays using the real-time PCR system. Two TctC proteins (locus tags VPARA-44430 and VPARA-01760) out of eight proteins showed a significant shift in their melting temperatures when they interact with the ligand (TDP or gluconate). The responsible genes were deleted in the genome of TBEA6 using suicide plasmid pJQ200mp18Tc, and single deletion mutants of the two candidate genes were subsequently generated. Finally, growth of the wild-type strain (TBEA6) and the two mutant strains (ΔVPARA-44430 and ΔVPARA-01760) were monitored and compared using TDP or gluconate as carbon sources. Wild type strains were successfully grown with TDP or gluconate. From the two mutant strains, one (ΔVPARA-44430) was unable to grow with TDP indicating that the tctC gene with locus tag VPARA-44430 is involved in the uptake of TDP.Key Points• Putative tctC genes from V. paradoxus TBEA6 were heterologously expressed in E. coli.• Protein-ligand interactions monitored in thermoshift assays using the real-time PCR.• tctC gene with locus tag VPARA-44430 is involved in the uptake of TDP.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Schäfer L, Meinert-Berning C, Wübbeler JH, Steinbüchel A. A tripartite tricarboxylate transporter (MIM_c39170-MIM_c39210) of Advenella mimigardefordensis DPN7 T is involved in citrate uptake. Int Microbiol 2019; 22:461-470. [PMID: 31098825 DOI: 10.1007/s10123-019-00073-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 01/30/2023]
Abstract
To date, tripartite tricarboxylate transport (TTT) systems are not well characterized in most organisms. To investigate which carbon sources are transported by the TTT system of A. mimigardefordensis DPN7T, single deletion mutants were generated lacking either completely both sets of genes encoding for these transport systems tctABCDE1 and tctABDE2 in the organism or the two genes encoding for the regulatory components of the third chosen TTT system, tctDE3. Deletion of tctABCDE1 (MIM_c39170-MIM_c39210) in Advenella mimigardefordensis strain DPN7T led to inhibition of growth of the cells with citrate indicating that TctABCDE1 is the transport system for the uptake of citrate. Because of the negative phenotype, it was concluded that this deletion cannot be substituted by other transporters encoded in the genome of strain DPN7T. A triple deletion mutant of A. mimigardefordensis lacking both complete TTT transport systems and the regulatory components of the third chosen system (ΔTctABCDE1 ΔTctABDE2 ΔTctDE3) showed a leaky growth with α-ketoglutarate in comparison with the wild type. The other investigated TTT (TctABDE3, MIM_c17190-MIM_c17220) is most probably involved in the transport of α-ketoglutarate. Additionally, thermoshift assays with TctC1 (MIM_c39190) showed a significant shift in the melting temperature of the protein in the presence of citrate whereas no shift occurred with α-ketoglutarate. A dissociation constant Kd for citrate of 41.7 μM was determined. Furthermore, alternative α-ketoglutarate transport was investigated via in silico analysis.
Collapse
Affiliation(s)
- Lukas Schäfer
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany. .,Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
4
|
Heine V, Meinert-Berning C, Lück J, Mikowsky N, Voigt B, Riedel K, Steinbüchel A. The catabolism of 3,3'-thiodipropionic acid in Variovorax paradoxus strain TBEA6: A proteomic analysis. PLoS One 2019; 14:e0211876. [PMID: 30742653 PMCID: PMC6370202 DOI: 10.1371/journal.pone.0211876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/23/2019] [Indexed: 01/11/2023] Open
Abstract
Variovorax paradoxus strain TBEA6 is one of the few organisms known to utilize 3,3'-thiodipropionate (TDP) as the only source of carbon and energy. It cleaves TDP to 3-mercaptopropionate (3MP), which is a direct precursor for polythioester synthesis. To establish this process in V. paradoxus TBEA6, it is crucial to unravel its TDP metabolism. Therefore, a proteomic approach with subsequent deletion of interesting genes in the bacterium was chosen. Cells were cultivated with D-gluconate, TDP or 3-sulfinopropionate as the only carbon sources. Proteins with high abundances in gels of cells cultivated with either of the organic sulfur compounds were analyzed further. Thereby, we did not only confirm parts of the already postulated TDP metabolism, but also eight new protein candidates for TDP degradation were detected. Deletions of the corresponding genes (two enoyl-CoA hydratases (Ech-20 and Ech-30), an FK506-binding protein, a putative acetolactate synthase, a carnitinyl-CoA dehydratase, and a putative crotonase family protein) were obtained. Only the deletions of both Ech-20 and Ech-30 led to a TDP negative phenotype. The deletion mutant of VPARA_05510, which encodes the putative crotonase family protein showed reduced growth with TDP. The three genes are located in one cluster with genes proven to be involved in TDP metabolism. Thermal shift assays showed an increased stability of Ech-20 with TDP-CoA but not with TDP. These results indicate that Ech-20 uses TDP-CoA as a substrate instead of TDP. Hence, we postulate a new putative pathway for TDP metabolism. Ech-30 interacts with neither TDP-CoA nor TDP but might interact with other CoA-activated intermediates of the proposed pathway. Further enzyme characterization is necessary to unravel the complete pathway from TDP to 3MP.
Collapse
Affiliation(s)
- Viktoria Heine
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Christina Meinert-Berning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Janina Lück
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Nadine Mikowsky
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Ricaud K, Rey M, Plagnes-Juan E, Larroquet L, Even M, Quillet E, Skiba-Cassy S, Panserat S. Composition of Intestinal Microbiota in Two Lines of Rainbow Trout ( Oncorhynchus Mykiss) Divergently Selected for Muscle Fat Content. Open Microbiol J 2018; 12:308-320. [PMID: 30288186 PMCID: PMC6142665 DOI: 10.2174/1874285801812010308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background Recently, studies suggest that gut microbiota contributes to the development of obesity in mammals. In rainbow trout, little is known about the role of intestinal microbiota in host physiology. Objective The aim of this study was to investigate the link between intestinal microbiota and adiposity, by high-throughput 16S RNA gene based illumina Miseq sequencing in two rainbow trout lines divergently selected for muscle lipid content. Fish from these two lines of rainbow trout are known to have a differing lipid metabolism. Methods Samples from the two lines (L for lean and F for fat) were collected from Midgut (M) and Hindgut (H) in juvenile fish (18 months) to compare intestinal microbiota diversity. Results Whatever the lines and intestinal localisation, Proteobacteria, Firmicutes and Actinobacteria are the dominant phyla in the bacterial community of rainbow trout (at least 97%). The results indicate that richness and diversity indexes as well as bacterial composition are comparable between all groups even though 6 specific OTUs were identified in the intestinal microbiota of fish from the fat line and 2 OTUs were specific to the microbiota of fish from the lean line. Our work contributes to a better understanding in microbial diversity in intestinal microbiota of rainbow trout. Conclusion Altogether, our study indicates that no major modification of the intestinal microbiota is induced by selection for muscle lipid content and associated metabolic changes. Finally, we identified members of core microbiota in rainbow trout.
Collapse
Affiliation(s)
- Karine Ricaud
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Mickael Rey
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Elisabeth Plagnes-Juan
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Laurence Larroquet
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Maxime Even
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Edwige Quillet
- UMR 1313 INRA, AgroParisTech, Université Paris-Saclay, GABI, 78350 Jouy-en-Josas, France
| | - Sandrine Skiba-Cassy
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| | - Stéphane Panserat
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle, F-64310, France
| |
Collapse
|
6
|
|
7
|
Wenning L, Stöveken N, Wübbeler JH, Steinbüchel A. Substrate and Cofactor Range Differences of Two Cysteine Dioxygenases from Ralstonia eutropha H16. Appl Environ Microbiol 2016; 82:910-21. [PMID: 26590284 PMCID: PMC4725276 DOI: 10.1128/aem.02568-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022] Open
Abstract
Cysteine dioxygenases (Cdos), which catalyze the sulfoxidation of cysteine to cysteine sulfinic acid (CSA), have been extensively studied in eukaryotes because of their roles in several diseases. In contrast, only a few prokaryotic enzymes of this type have been investigated. In Ralstonia eutropha H16, two Cdo homologues (CdoA and CdoB) have been identified previously. In vivo studies showed that Escherichia coli cells expressing CdoA could convert 3-mercaptopropionate (3MP) to 3-sulfinopropionate (3SP), whereas no 3SP could be detected in cells expressing CdoB. The objective of this study was to confirm these findings and to study both enzymes in detail by performing an in vitro characterization. The proteins were heterologously expressed and purified to apparent homogeneity by immobilized metal chelate affinity chromatography (IMAC). Subsequent analysis of the enzyme activities revealed striking differences with regard to their substrate ranges and their specificities for the transition metal cofactor, e.g., CdoA catalyzed the sulfoxidation of 3MP to a 3-fold-greater extent than the sulfoxidation of cysteine, whereas CdoB converted only cysteine. Moreover, the dependency of the activities of the Cdos from R. eutropha H16 on the metal cofactor in the active center could be demonstrated. The importance of CdoA for the metabolism of the sulfur compounds 3,3'-thiodipropionic acid (TDP) and 3,3'-dithiodipropionic acid (DTDP) by further converting their degradation product, 3MP, was confirmed. Since 3MP can also function as a precursor for polythioester (PTE) synthesis in R. eutropha H16, deletion of cdoA might enable increased synthesis of PTEs.
Collapse
Affiliation(s)
- Leonie Wenning
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nadine Stöveken
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|