1
|
Munaweera TIK, Damnjanović J, Camagna M, Nezu M, Jia B, Hitomi K, Nemoto N, Nakano H. Substrate profiling of human transglutaminase 1 using cDNA display and next-generation sequencing. Biosci Biotechnol Biochem 2024; 88:620-629. [PMID: 38479783 DOI: 10.1093/bbb/zbae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 05/23/2024]
Abstract
Human transglutaminase 1 (TG1) modulates skin development, while its involvement in diseases remains poorly understood, necessitating comprehensive exploration of its substrate interactions. To study the substrate profile of TG1, an in vitro selection system based on cDNA display technology was used to screen two peptide libraries with mutations at varying distance from the reactive glutamine. Next-generation sequencing and bioinformatics analysis of the selected DNA pools revealed a detailed TG1 substrate profile, indicating preferred and non-preferred amino acid sequences. The peptide sequence, AEQHKLPSKWPF, was identified showing high reactivity and specificity to TG1. The position weight matrix calculated from the per amino acid enrichment factors was employed to search human proteins using an in-house algorithm, revealing six known TG1 substrate proteins with high scores, alongside a list of candidate substrates currently under investigation. Our findings are expected to assist in future medical diagnoses and development of treatments for skin disorders.
Collapse
Affiliation(s)
- T I K Munaweera
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Jasmina Damnjanović
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Maurizio Camagna
- Laboratory of Plant Pathology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Moeri Nezu
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Beixi Jia
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kiyotaka Hitomi
- Laboratory of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Naoto Nemoto
- Laboratory of Evolutionary Molecular Engineering, Graduate School of Science and Engineering, Saitama University , Saitama, Japan
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Zeng Y, Woolley M, Chockalingam K, Thomas B, Arora S, Hook M, Chen Z. Click display: a rapid and efficient in vitro protein display method for directed evolution. Nucleic Acids Res 2023; 51:e89. [PMID: 37548398 PMCID: PMC10484664 DOI: 10.1093/nar/gkad643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
We describe a novel method for in vitro protein display-click display-that does not depend on maintaining RNA integrity during biopanning and yields covalently linked protein-cDNA complexes from double-stranded input DNA within 2 h. The display is achieved in a one-pot format encompassing transcription, translation and reverse transcription reactions in series. Stable linkage between proteins and the encoding cDNA is mediated by a modified DNA linker-ML-generated via a click chemistry reaction between a puromycin-containing oligo and a cDNA synthesis primer. Biopanning of a click-displayed mock library coupled with next-generation sequencing analysis revealed >600-fold enrichment of target binders within a single round of panning. A synthetic library of Designed Ankyrin Repeat Proteins (DARPins) with ∼1012 individual members was generated using click display in a 25-μl reaction and six rounds of library panning against a model protein yielded a panel of nanomolar binders. This study establishes click display as a powerful tool for protein binder discovery/engineering and provides a convenient platform for in vitro biopanning selection even in RNase-rich environments such as on whole cells.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Michael Woolley
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Karuppiah Chockalingam
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Benjamin Thomas
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, Houston, TX 77030, USA
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
3
|
Seo K, Hagino K, Ichihashi N. Progresses in Cell-Free In Vitro Evolution. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:121-140. [PMID: 37306699 DOI: 10.1007/10_2023_219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biopolymers, such as proteins and RNA, are integral components of living organisms and have evolved through a process of repeated mutation and selection. The technique of "cell-free in vitro evolution" is a powerful experimental approach for developing biopolymers with desired functions and structural properties. Since Spiegelman's pioneering work over 50 years ago, biopolymers with a wide range of functions have been developed using in vitro evolution in cell-free systems. The use of cell-free systems offers several advantages, including the ability to synthesize a wider range of proteins without the limitations imposed by cytotoxicity, and the capacity for higher throughput and larger library sizes than cell-based evolutionary experiments. In this chapter, we provide a comprehensive overview of the progress made in the field of cell-free in vitro evolution by categorizing evolution into directed and undirected. The biopolymers produced by these methods are valuable assets in medicine and industry, and as a means of exploring the potential of biopolymers.
Collapse
Affiliation(s)
- Kaito Seo
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Katsumi Hagino
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan.
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan.
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Leong KW, Yu F, Makrigiorgos GM. Mutation enrichment in human DNA samples via UV-mediated cross-linking. Nucleic Acids Res 2021; 50:e32. [PMID: 34904676 PMCID: PMC8989544 DOI: 10.1093/nar/gkab1222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/28/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Detection of low-level DNA mutations can reveal recurrent, hotspot genetic changes of clinical relevance to cancer, prenatal diagnostics, organ transplantation or infectious diseases. However, the high excess of wild-type (WT) alleles, which are concurrently present, often hinders identification of salient genetic changes. Here, we introduce UV-mediated cross-linking minor allele enrichment (UVME), a novel approach that incorporates ultraviolet irradiation (∼365 nm UV) DNA cross-linking either before or during PCR amplification. Oligonucleotide probes matching the WT target sequence and incorporating a UV-sensitive 3-cyanovinylcarbazole nucleoside modification are employed for cross-linking WT DNA. Mismatches formed with mutated alleles reduce DNA binding and UV-mediated cross-linking and favor mutated DNA amplification. UV can be applied before PCR and/or at any stage during PCR to selectively block WT DNA amplification and enable identification of traces of mutated alleles. This enables a single-tube PCR reaction directly from genomic DNA combining optimal pre-amplification of mutated alleles, which then switches to UV-mediated mutation enrichment-based DNA target amplification. UVME cross-linking enables enrichment of mutated KRAS and p53 alleles, which can be screened directly via Sanger sequencing, high-resolution melting, TaqMan genotyping or digital PCR, resulting in the detection of mutation allelic frequencies of 0.001–0.1% depending on the endpoint detection method. UV-mediated mutation enrichment provides new potential for mutation enrichment in diverse clinical samples.
Collapse
Affiliation(s)
- Ka Wai Leong
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - Fangyan Yu
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| | - G Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02115, USA
| |
Collapse
|
5
|
Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021; 50:9055-9103. [PMID: 34165126 PMCID: PMC8725378 DOI: 10.1039/d1cs00160d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.
Collapse
Affiliation(s)
- Golnaz Kamalinia
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
6
|
Jayathilake C, Nemoto N. cDNA Display-Mediated Immuno-PCR (cD-IPCR): An Ultrasensitive Immunoassay for Biomolecular Detection. Methods Mol Biol 2021; 2261:307-321. [PMID: 33420998 DOI: 10.1007/978-1-0716-1186-9_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Immuno-PCR (IPCR) is a sensitive antigen detection by means of specific antibody-DNA conjugates. To ensure the successful conjugation of a protein (an antibody) with a reporter DNA, immuno-PCR method based on cDNA display (cD-IPCR) has been introduced. The cDNA display molecule is a 1:1 covalent complex of a polypeptide and its encoding cDNA at the single molecule level, which is directly used for antigen detection and subsequent qPCR. This method can be applied to detect various antigens in biological samples, if sequences of their single-domain antibodies (VHHs) or peptide aptamers are known.
Collapse
Affiliation(s)
| | - Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
- Epsilon Molecular Engineering, Inc., Saitama, Japan.
| |
Collapse
|
7
|
Terai T, Koike T, Nemoto N. Photocrosslinking of cDNA Display Molecules with Their Target Proteins as a New Strategy for Peptide Selection. Molecules 2020; 25:molecules25061472. [PMID: 32214008 PMCID: PMC7146492 DOI: 10.3390/molecules25061472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
Binding peptides for given target molecules are often selected in vitro during drug discovery and chemical biology research. Among several display technologies for this purpose, complementary DNA (cDNA) display (a covalent complex of a peptide and its encoding cDNA linked via a specially designed puromycin-conjugated DNA) is unique in terms of library size, chemical stability, and flexibility of modification. However, selection of cDNA display libraries often suffers from false positives derived from non-specific binding. Although rigorous washing is a straightforward solution, this also leads to the loss of specific binders with moderate affinity because the interaction is non-covalent. To address this issue, herein, we propose a method to covalently link cDNA display molecules with their target proteins using light irradiation. We designed a new puromycin DNA linker that contains a photocrosslinking nucleic acid and prepared cDNA display molecules using the linker. Target proteins were also labeled with a short single-stranded DNA that should transiently hybridize with the linker. Upon ultraviolet (UV) light irradiation, cDNA display molecules encoding correct peptide aptamers made stable crosslinked products with the target proteins in solution, while display molecules encoding control peptides did not. Although further optimization and improvement is necessary, the results pave the way for efficient selection of peptide aptamers in multimolecular crowding biosystems.
Collapse
Affiliation(s)
- Takuya Terai
- Correspondence: (T.T.); or (N.N); Tel.: +81-48-858-3534 (T.T.); +81-48-858-3531 (N.N.)
| | | | - Naoto Nemoto
- Correspondence: (T.T.); or (N.N); Tel.: +81-48-858-3534 (T.T.); +81-48-858-3531 (N.N.)
| |
Collapse
|
8
|
Arai H, Kumachi S, Nemoto N. cDNA Display: A Stable and Simple Genotype-Phenotype Coupling Using a Cell-Free Translation System. Methods Mol Biol 2020; 2070:43-56. [PMID: 31625089 DOI: 10.1007/978-1-4939-9853-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cDNA display method was developed based on the mRNA display method to increase its stability and efficiency for the directed evolution of various kinds of peptides and proteins. In this method, the puromycin-linker is a key molecule to realize smart genotype-phenotype coupling. A recently improved puromycin-linker and its use were explained in detail for the in vitro selection of peptides and proteins using the cDNA display method.
Collapse
Affiliation(s)
- Hidenao Arai
- Epsilon Molecular Engineering, Inc., Saitama, Japan
| | | | - Naoto Nemoto
- Epsilon Molecular Engineering, Inc., Saitama, Japan. .,Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| |
Collapse
|
9
|
Jayathilake C, Kumachi S, Arai H, Motohashi M, Terai T, Murakami A, Nemoto N. In vitro selection of anti-gliadin single-domain antibodies from a naïve library for cDNA-display mediated immuno-PCR. Anal Biochem 2019; 589:113490. [PMID: 31678363 DOI: 10.1016/j.ab.2019.113490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Gluten intolerance, or adverse intestinal reactions to gluten, is a fairly common problem among certain groups of people. Celiac disease is the most severe form of gluten intolerance, which can lead to permanent damage in the digestive system. Since lifelong avoidance of gluten is the only available treatment, development of reliable techniques to identify gluten contamination in food is important. Gliadin, a component of gluten, is known to play a major role in gluten toxicity. In this study, cDNA display method was used to select specific single-domain antibodies against toxic gliadin from an alpaca-derived naïve VHH library. The cDNA display method is a promising in vitro display technique, which uniquely converts an unstable mRNA-protein fusion molecule to a stable mRNA/cDNA-protein fusion molecule using a well-designed puromycin linker. Three candidate VHHs were selected and the affinities of the VHHs were observed by pulldown assay and indirect ELISA method. In addition, a novel cDNA display mediated immuno-PCR method (cD-IPCR) was successfully applied to detect gliadin in food. We believe this work demonstrates the potential application of the cDNA display method in selecting binders against toxic and heterogeneous targets such as gliadin with an immunization-free preparation manner.
Collapse
Affiliation(s)
- Chathuni Jayathilake
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | | | - Hidenao Arai
- Epsilon Molecular Engineering, Inc, Saitama, 338-8570, Japan
| | - Maiko Motohashi
- Epsilon Molecular Engineering, Inc, Saitama, 338-8570, Japan
| | - Takuya Terai
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Akikazu Murakami
- Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan; Epsilon Molecular Engineering, Inc, Saitama, 338-8570, Japan.
| |
Collapse
|
10
|
Terai T, Anzai H, Nemoto N. Selection of Peptides that Associate with Dye-Conjugated Solid Surfaces in a pH-Dependent Manner Using cDNA Display. ACS OMEGA 2019; 4:7378-7384. [PMID: 31459836 PMCID: PMC6649003 DOI: 10.1021/acsomega.9b00631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/12/2019] [Indexed: 05/10/2023]
Abstract
Peptides that recognize artificial materials including synthetic polymers and small molecules are drawing attention in the fields of biotechnology and chemical biology. In particular, reversible peptide aptamers that associate with the target molecules only under specific conditions are interesting. In this work, peptide aptamers that recognize a phenolphthalein derivative (PhP: a pH-sensitive organic dye) immobilized on a solid surface in a pH-dependent manner were selected using an in vitro display method (cDNA display). Considering the hydrophobic and aromatic nature of PhP, we prepared a biased DNA library (3A library) that encodes more aromatic amino acids than the standard random codon and performed seven rounds of selection from >1010 peptide species. The selected peptides including LVFLIWWM (LV59) associated with PhP-modified solid support (sepharose resin and magnetic beads) in neutral buffer but readily dissociated under basic conditions where PhP undergoes large structural change from lactone to quinoid, which is accompanied by increase of hydrophilicity and anionic charge. Control experiments suggested that LV59 recognized both phenol and lactone moieties, and the association under neutral pH is mainly driven by π-stacking and hydrophobic interaction between the peptide and PhP. Notably, however, total hydrophobicity and number of aromatic rings did not completely explain the affinity, and sequence specificity was observed to some extent. After further optimization, this interaction pair would be practically useful for protein purification.
Collapse
Affiliation(s)
- Takuya Terai
- Graduate
School of Science and Engineering, Saitama
University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
- E-mail: (T.T.)
| | - Hiroki Anzai
- Graduate
School of Science and Engineering, Saitama
University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Naoto Nemoto
- Graduate
School of Science and Engineering, Saitama
University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
- Epsilon
Molecular Engineering, Company Limited, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
- E-mail: . Phone: +81-48-858-3531 (N.N.)
| |
Collapse
|
11
|
Contreras-Llano LE, Tan C. High-throughput screening of biomolecules using cell-free gene expression systems. Synth Biol (Oxf) 2018; 3:ysy012. [PMID: 32995520 PMCID: PMC7445777 DOI: 10.1093/synbio/ysy012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
The incorporation of cell-free transcription and translation systems into high-throughput screening applications enables the in situ and on-demand expression of peptides and proteins. Coupled with modern microfluidic technology, the cell-free methods allow the screening, directed evolution and selection of desired biomolecules in minimal volumes within a short timescale. Cell-free high-throughput screening applications are classified broadly into in vitro display and on-chip technologies. In this review, we outline the development of cell-free high-throughput screening methods. We further discuss operating principles and representative applications of each screening method. The cell-free high-throughput screening methods may be advanced by the future development of new cell-free systems, miniaturization approaches, and automation technologies.
Collapse
Affiliation(s)
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
12
|
Quantitative investigation of the direct interaction between Hemagglutinin and fusion proteins of Peste des petits ruminant virus using surface Plasmon resonance. Virol J 2018; 15:21. [PMID: 29357882 PMCID: PMC5778702 DOI: 10.1186/s12985-018-0933-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/15/2018] [Indexed: 11/30/2022] Open
Abstract
Background The specific and dynamic interaction between the hemagglutinin (H) and fusion (F) proteins of morbilliviruses is a prerequisite for the conformational rearrangements and membrane fusion during infection process. The two heptad repeat regions (HRA and HRB) of F protein are both important for the triggering of F protein. Methods In this study, the direct interactions of Peste des petits ruminants virus (PPRV) H with F, HRA and HRB were quantitatively evaluated using biosensor surface plasmon resonance (SPR). Results The binding affinities of immobilized pCMV-HA-H (HA-H) interacted with proteins pCMV-HA-F (HA-F) and pCMV-HA-HRB (HA-HRB) (KD = 1.91 × 10− 8 M and 2.60 × 10− 7 M, respectively) reacted an order of magnitude more strongly than that of pCMV-HA-HRA (HA-HRA) and pCMV-HA-Tp IGFR-LD (HA) (KD = 1.08 × 10− 4 M and 1.43 × 10− 4 M, respectively). Conclusions The differences of the binding affinities suggested that HRB is involved in functionally important intermolecular interaction in the fusion process.
Collapse
|
13
|
Nemoto N, Kumachi S, Arai H. In Vitro Selection of Single-Domain Antibody (VHH) Using cDNA Display. Methods Mol Biol 2018; 1827:269-285. [PMID: 30196502 DOI: 10.1007/978-1-4939-8648-4_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-domain antibody (e.g., Nanobody, VHH antibody) is a promising scaffold for therapeutic and diagnostic reagents. To expand the range of target molecules, in vitro selection using cell-free display technologies such as cDNA display is useful and powerful because of their huge libraries and robust stability. We provide technical details for in vitro selection of single-domain antibodies using cDNA display.
Collapse
Affiliation(s)
- Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
- Epsilon Molecular Engineering, Inc., Saitama, Japan.
| | | | - Hidenao Arai
- Epsilon Molecular Engineering, Inc., Saitama, Japan
| |
Collapse
|
14
|
Nakamura S, Kawabata H, Fujimoto K. Sequence-Specific DNA Photosplitting of Crosslinked DNAs Containing the 3-Cyanovinylcarbazole Nucleoside by Using DNA Strand Displacement. Chembiochem 2016; 17:1499-503. [PMID: 27357523 DOI: 10.1002/cbic.201600236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/30/2022]
Abstract
An oligodeoxynucleotide (ODN) containing the ultrafast reversible 3-cyanovinylcarbazole ((CNV) K) photo-crosslinker was photo-crosslinked to a complementary strand upon exposure to 366 nm irradiation and photosplit by use of 312 nm irradiation. In this paper we report that the photoreaction of (CNV) K on irradiation at 366 nm involves a photostationary state and that its reaction can be controlled by temperature. Guided by this new insight, we proposed and have now demonstrated previously unknown photosplitting of (CNV) K aided by DNA strand displacement as an alternative to heating. The photo-crosslinked double-stranded DNA (dsDNA) underwent >80 % photosplitting aided by DNA strand displacement on irradiation at 366 nm without heating. In this photosplitting based on DNA strand displacement, the relative thermal stability of the invader strand with respect to the template strands plays an important role, and an invader strand/template strand system that is more stable than the passenger strand/template strand system induces photosplitting without heating. This new strand-displacement-aided photosplitting occurred in a sequence-specific manner through irradiation at 366 nm in the presence of an invader strand.
Collapse
Affiliation(s)
- Shigetaka Nakamura
- School of Materials Science, Japan Advanced Institute Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, Japan
| | - Hayato Kawabata
- School of Materials Science, Japan Advanced Institute Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, Japan
| | - Kenzo Fujimoto
- School of Materials Science, Japan Advanced Institute Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, Japan.
| |
Collapse
|
15
|
Kumachi S, Husimi Y, Nemoto N. An RNA Binding Peptide Consisting of Four Types of Amino Acid by in Vitro Selection Using cDNA Display. ACS OMEGA 2016; 1:52-57. [PMID: 30023471 PMCID: PMC6044570 DOI: 10.1021/acsomega.6b00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/17/2016] [Indexed: 05/06/2023]
Abstract
RNA-protein interactions have a central role in the living world. In this article, we examined whether primitive peptides (30 residues) consisting of four types of amino acid (Gly, Ala, Asp, and Val) could interact with tRNA as a model of primitive RNAs in the RNA world. By in vitro selection of binding peptides using the cDNA display method, a characteristic peptide was selected from a random peptide library and assayed by electrophoretic mobility shift and pull-down assays. Interestingly, the selected peptide bound to a single-stranded region including a loop structure of an RNA molecule with some sequence specificity.
Collapse
Affiliation(s)
- Shigefumi Kumachi
- Graduate
School of Science and Engineering, Saitama
University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yuzuru Husimi
- SOKENDAI
(The Graduate University for Advanced Studies), Shonan International Village, Hayama, Kanagawa 240-0193, Japan
| | - Naoto Nemoto
- Graduate
School of Science and Engineering, Saitama
University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
- E-mail: . Fax: +81-48-858-3531. Tel: +81-48-858-3531
| |
Collapse
|
16
|
Naimuddin M, Kubo T. A High Performance Platform Based on cDNA Display for Efficient Synthesis of Protein Fusions and Accelerated Directed Evolution. ACS COMBINATORIAL SCIENCE 2016; 18:117-29. [PMID: 26812183 DOI: 10.1021/acscombsci.5b00139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe a high performance platform based on cDNA display technology by developing a new modified puromycin linker-oligonucleotide. The linker consists of four major characteristics: a "ligation site" for hybridization and ligation of mRNA by T4 RNA ligase, a "puromycin arm" for covalent linkage of the protein, a "polyadenosine site" for a longer puromycin arm and purification of protein fusions (optional) using oligo-dT matrices, and a "reverse transcription site" for the formation of stable cDNA protein fusions whose cDNA is covalently linked to its encoded protein. The linker was synthesized by a novel branching strategy and provided >8-fold higher yield than previous linkers. This linker enables rapid and highly efficient ligation of mRNA (>90%) and synthesis of protein fusions (∼ 50-95%) in various cell-free expression systems. Overall, this new cDNA display method provides 10-200 fold higher end-usage fusions than previous methods and benefits higher diversity libraries crucial for directed protein/peptide evolution. With the increased efficiency, this system was able to reduce the time for one selection cycle to <8 h and is potentially amenable to high-throughput systems. We demonstrate the efficiency of this system for higher throughput selections of various biomolecular interactions and achieved 30-40-fold enrichment per selection cycle. Furthermore, a 4-fold higher enrichment of Flag-tag was obtained from a doped mixture compared with that of the previous cDNA display method. A three-finger protein library was evolved to isolate superior nanomolar range binding candidates for vascular endothelial growth factor. This method is expected to provide a beneficial impact to accelerated drug discovery and proteome analysis.
Collapse
Affiliation(s)
- Mohammed Naimuddin
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Janusys Corporation, #508, Saitama
Industrial Technology Center, Skip City, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844, Japan
| | - Tai Kubo
- Biomedical
Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Molecular
Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|