1
|
Davis SM, Romig BL, Abe AA, Loening NM. An improved variant of tobacco etch virus (TEV) protease that does not need reducing agents. Protein Sci 2025; 34:e70049. [PMID: 39969093 PMCID: PMC11837032 DOI: 10.1002/pro.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/21/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Here we show that a combination of previously suggested mutations for tobacco etch virus (TEV) protease results in a TEV protease mutant that maintains the same catalytic efficiency as previously described mutants but has enhanced stability and solubility. Another advantage of this new variant of TEV protease is that it does not need the inclusion of a reducing agent to maintain its effectiveness, making it easier to generate, store, and use in cleavage reactions compared to previous TEV protease mutants and, in particular, makes it a good choice for cleaving proteins that contain disulfide bonds that would otherwise be altered by the inclusion of a reducing agent. We also provide a straightforward purification protocol for generating this new version of TEV protease.
Collapse
Affiliation(s)
- Stella M. Davis
- Department of ChemistryLewis & Clark CollegePortlandOregonUSA
| | - Bryn L. Romig
- Department of ChemistryLewis & Clark CollegePortlandOregonUSA
| | - Alyssa A. Abe
- Department of ChemistryLewis & Clark CollegePortlandOregonUSA
| | | |
Collapse
|
2
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. Sci Rep 2024; 14:21912. [PMID: 39300145 PMCID: PMC11413390 DOI: 10.1038/s41598-024-71634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Vincent C Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
3
|
Dates AN, Jones DTD, Smith JS, Skiba MA, Rich MF, Burruss MM, Kruse AC, Blacklow SC. Heterogeneity of tethered agonist signaling in adhesion G protein-coupled receptors. Cell Chem Biol 2024; 31:1542-1553.e4. [PMID: 38608683 PMCID: PMC11330365 DOI: 10.1016/j.chembiol.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Adhesion G protein-coupled receptor (aGPCR) signaling influences development and homeostasis in a wide range of tissues. In the current model for aGPCR signaling, ligand binding liberates a conserved sequence that acts as an intramolecular, tethered agonist (TA), yet this model has not been evaluated systematically for all aGPCRs. Here, we assessed the TA-dependent activities of all 33 aGPCRs in a suite of transcriptional reporter, G protein activation, and β-arrestin recruitment assays using a new fusion protein platform. Strikingly, only ∼50% of aGPCRs exhibited robust TA-dependent activation, and unlike other GPCR families, aGPCRs showed a notable preference for G12/13 signaling. AlphaFold2 predictions assessing TA engagement in the predicted intramolecular binding pocket aligned with the TA dependence of the cellular responses. This dataset provides a comprehensive resource to inform the investigation of all human aGPCRs and for targeting aGPCRs therapeutically.
Collapse
Affiliation(s)
- Andrew N Dates
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T D Jones
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey S Smith
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Rich
- University of Cincinnati School of Medicine, Department of Molecular Genetics, Biochemistry, and Microbiology, Cincinnati, OH 45267, USA
| | - Maggie M Burruss
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Foran G, Hallam RD, Megaly M, Turgambayeva A, Antfolk D, Li Y, Luca VC, Necakov A. Notch1 Phase Separation Coupled Percolation facilitates target gene expression and enhancer looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.17.533124. [PMID: 39131356 PMCID: PMC11312450 DOI: 10.1101/2023.03.17.533124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The Notch receptor is a pleiotropic signaling protein that translates intercellular ligand interactions into changes in gene expression via the nuclear localization of the Notch intracellular Domain (NICD). Using a combination of immunohistochemistry, RNA in situ, Optogenetics and super-resolution live imaging of transcription in human cells, we show that the N1ICD can form condensates that positively facilitate Notch target gene expression. We determined that N1ICD undergoes Phase Separation Coupled Percolation (PSCP) into transcriptional condensates, which recruit, enrich, and encapsulate a broad set of core transcriptional proteins. We show that the capacity for condensation is due to the intrinsically disordered transcriptional activation domain of the N1ICD. In addition, the formation of such transcriptional condensates acts to promote Notch-mediated super enhancer-looping and concomitant activation of the MYC protooncogene expression. Overall, we introduce a novel mechanism of Notch1 activity in which discrete changes in nuclear N1ICD abundance are translated into the assembly of transcriptional condensates that facilitate gene expression by enriching essential transcriptional machineries at target genomic loci.
Collapse
Affiliation(s)
- Gregory Foran
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Ryan Douglas Hallam
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Marvel Megaly
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Anel Turgambayeva
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Daniel Antfolk
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Yifeng Li
- Department of Computer Science, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Vincent C. Luca
- Department of Immunology, Moffitt Cancer Centre, Tampa, FL, USA
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
5
|
Martinusen SG, Slaton EW, Nelson SE, Pulgar MA, Besu JT, Simas CF, Denard CA. Modular and integrative activity reporters enhance biochemical studies in the yeast ER. Protein Eng Des Sel 2024; 37:gzae008. [PMID: 38696722 DOI: 10.1093/protein/gzae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
The yeast endoplasmic reticulum sequestration and screening (YESS) system is a broadly applicable platform to perform high-throughput biochemical studies of post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CLpro), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.
Collapse
Affiliation(s)
| | - Ethan W Slaton
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Sage E Nelson
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Marian A Pulgar
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
| | - Julia T Besu
- Department of Biology, University of Florida, Gainesville, 32611, USA
| | - Cassidy F Simas
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, 32611, USA
| | - Carl A Denard
- Department of Chemical Engineering, University of Florida, Gainesville, 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, 32611, USA
| |
Collapse
|
6
|
Dingal PCDP, Carte AN, Montague TG, Lim Suan MB, Schier AF. Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1. Proc Natl Acad Sci U S A 2023; 120:e2307203120. [PMID: 37844219 PMCID: PMC10614602 DOI: 10.1073/pnas.2307203120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023] Open
Abstract
The TGF-beta signals Vg1 (Dvr1/Gdf3) and Nodal form heterodimers to induce vertebrate mesendoderm. The Vg1 proprotein is a monomer retained in the endoplasmic reticulum (ER) and is processed and secreted upon heterodimerization with Nodal, but the mechanisms underlying Vg1 biogenesis are largely elusive. Here, we clarify the mechanisms underlying Vg1 retention, processing, secretion, and signaling and introduce a Synthetic Processing (SynPro) system that enables the programmed cleavage of ER-resident and extracellular proteins. First, we find that Vg1 can be processed by intra- or extracellular proteases. Second, Vg1 can be processed without Nodal but requires Nodal for secretion and signaling. Third, Vg1-Nodal signaling activity requires Vg1 processing, whereas Nodal can remain unprocessed. Fourth, Vg1 employs exposed cysteines, glycosylated asparagines, and BiP chaperone-binding motifs for monomer retention in the ER. These observations suggest two mechanisms for rapid mesendoderm induction: Chaperone-binding motifs help store Vg1 as an inactive but ready-to-heterodimerize monomer in the ER, and the flexibility of Vg1 processing location allows efficient generation of active heterodimers both intra- and extracellularly. These results establish SynPro as an in vivo processing system and define molecular mechanisms and motifs that facilitate the generation of active TGF-beta heterodimers.
Collapse
Affiliation(s)
- P. C. Dave P. Dingal
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX75080
| | - Adam N. Carte
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA02138
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Medel B. Lim Suan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX75080
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Biozentrum, University of Basel, 4056Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA98109
| |
Collapse
|
7
|
Martinusen SG, Slaton EW, Nelson SE, Pulgar MA, Besu JT, Simas CF, Denard CA. Modular and integrative activity reporters enhance biochemical studies in the yeast ER. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548713. [PMID: 37502857 PMCID: PMC10369952 DOI: 10.1101/2023.07.12.548713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The yeast endoplasmic reticulum sequestration and screening (YESS) system is a generalizable platform that has become highly useful to investigate post-translational modification enzymes (PTM-enzymes). This system enables researchers to profile and engineer the activity and substrate specificity of PTM-enzymes and to discover inhibitor-resistant enzyme mutants. In this study, we expand the capabilities of YESS by transferring its functional components to integrative plasmids. The YESS integrative system yields uniform protein expression and protease activities in various configurations, allows one to integrate activity reporters at two independent loci and to split the system between integrative and centromeric plasmids. We characterize these integrative reporters with two viral proteases, Tobacco etch virus (TEVp) and 3-chymotrypsin like protease (3CL pro ), in terms of coefficient of variance, signal-to-noise ratio and fold-activation. Overall, we provide a framework for chromosomal-based studies that is modular, enabling rigorous high-throughput assays of PTM-enzymes in yeast.
Collapse
|
8
|
Mahameed M, Wang P, Xue S, Fussenegger M. Engineering receptors in the secretory pathway for orthogonal signalling control. Nat Commun 2022; 13:7350. [PMID: 36446786 PMCID: PMC9708828 DOI: 10.1038/s41467-022-35161-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Synthetic receptors targeted to the secretory pathway often fail to exhibit the expected activity due to post-translational modifications (PTMs) and/or improper folding. Here, we engineered synthetic receptors that reside in the cytoplasm, inside the endoplasmic reticulum (ER), or on the plasma membrane through orientation adjustment of the receptor parts and by elimination of dysfunctional PTMs sites. The cytoplasmic receptors consist of split-TEVp domains that reconstitute an active protease through chemically-induced dimerization (CID) that is triggered by rapamycin, abscisic acid, or gibberellin. Inside the ER, however, some of these receptors were non-functional, but their activity was restored by mutagenesis of cysteine and asparagine, residues that are typically associated with PTMs. Finally, we engineered orthogonal chemically activated cell-surface receptors (OCARs) consisting of the Notch1 transmembrane domain fused to cytoplasmic tTA and extracellular CID domains. Mutagenesis of cysteine residues in CID domains afforded functional OCARs which enabled fine-tuning of orthogonal signalling in mammalian cells.
Collapse
Affiliation(s)
- Mohamed Mahameed
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Pengli Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland.
- Faculty of Life Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
9
|
Mansouri M, Ray PG, Franko N, Xue S, Fussenegger M. Design of programmable post-translational switch control platform for on-demand protein secretion in mammalian cells. Nucleic Acids Res 2022; 51:e1. [PMID: 36268868 PMCID: PMC9841418 DOI: 10.1093/nar/gkac916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/11/2022] [Accepted: 10/20/2022] [Indexed: 01/29/2023] Open
Abstract
The development of novel strategies to program cellular behaviors is a central goal in synthetic biology, and post-translational control mediated by engineered protein circuits is a particularly attractive approach to achieve rapid protein secretion on demand. We have developed a programmable protease-mediated post-translational switch (POSH) control platform composed of a chimeric protein unit that consists of a protein of interest fused via a transmembrane domain to a cleavable ER-retention signal, together with two cytosolic inducer-sensitive split protease components. The protease components combine in the presence of the specific inducer to generate active protease, which cleaves the ER-retention signal, releasing the transmembrane-domain-linked protein for trafficking to the trans-Golgi region. A furin site placed downstream of the protein ensures cleavage and subsequent secretion of the desired protein. We show that stimuli ranging from plant-derived, clinically compatible chemicals to remotely controllable inducers such as light and electrostimulation can program protein secretion in various POSH-engineered designer mammalian cells. As proof-of-concept, an all-in-one POSH control plasmid encoding insulin and abscisic acid-activatable split protease units was hydrodynamically transfected into the liver of type-1 diabetic mice. Induction with abscisic acid attenuated glycemic excursions in glucose-tolerance tests. Increased blood levels of insulin were maintained for 12 days.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- To whom correspondence should be addressed. Tel: +41 61 387 31 60; Fax: +41 61 387 39 88;
| |
Collapse
|
10
|
Umbach A, Maule G, Kheir E, Cutarelli A, Foglia M, Guarrera L, Fava LL, Conti L, Garattini E, Terao M, Cereseto A. Generation of corrected hiPSC clones from a Cornelia de Lange Syndrome (CdLS) patient through CRISPR-Cas-based technology. Stem Cell Res Ther 2022; 13:440. [PMID: 36056433 PMCID: PMC9438151 DOI: 10.1186/s13287-022-03135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background Cornelia de Lange syndrome (CdLS) is a rare multisystem genetic disorder which is caused by genetic defects involving the Nipped-B-like protein (NIPBL) gene in the majority of clinical cases (60–70%). Currently, there are no specific cures available for CdLS and clinical management is needed for life. Disease models are highly needed to find a cure. Among therapeutic possibilities are genome editing strategies based on CRISPR-Cas technology. Methods A comparative analysis was performed to test the most recent CRISPR-Cas technologies comprising base- and prime-editors which introduce modifications without DNA cleavages and compared with sequence substitution approaches through homology directed repair (HDR) induced by Cas9 nuclease activity. The HDR method that was found more efficient was applied to repair a CdLS-causing mutation in the NIPBL gene. Human-induced pluripotent stem cells (hiPSCs) derived from a CdLS patient carrying the c.5483G > A mutation in the NIPBL were modified through HDR to generate isogenic corrected clones. Results This study reports an efficient method to repair the NIPBL gene through HDR mediated by CRISPR-Cas and induced with a compound (NU7441) inhibiting non-homologous end joining (NHEJ) repair. This sequence repair method allowed the generation of isogenic wild-type hiPSCs clones with regular karyotype and preserved pluripotency. Conclusions CdLS cellular models were generated which will facilitate the investigation of the disease molecular determinants and the identification of therapeutic targets. In particular, the hiPSC-based cellular models offer the paramount advantage to study the tissue differentiation stages which are altered in the CdLS clinical development. Importantly, the hiPSCs that were generated are isogenic thus providing the most controlled experimental set up between wild-type and mutated conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03135-0.
Collapse
Affiliation(s)
- Alessandro Umbach
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | - Giulia Maule
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | - Eyemen Kheir
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | | | - Marika Foglia
- Laboratory of Molecular Biology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Luca Guarrera
- Laboratory of Molecular Biology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Luca L Fava
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | - Luciano Conti
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anna Cereseto
- Department CIBIO, University of Trento, Via Sommarive 9, 38123, Povo, Italy.
| |
Collapse
|
11
|
Fink T, Jerala R. Designed protease-based signaling networks. Curr Opin Chem Biol 2022; 68:102146. [DOI: 10.1016/j.cbpa.2022.102146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/27/2022]
|
12
|
Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage. Nat Commun 2022; 13:1323. [PMID: 35260576 PMCID: PMC8904541 DOI: 10.1038/s41467-022-28971-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Response of protein secretion based on transcriptional control is rather slow, as it requires transcription, translation and transport from the endoplasmic reticulum (ER) to the plasma membrane via the conventional protein secretion (CPS) pathway. An alternative regulation to provide faster response would be valuable. Here we present two genetically encoded orthogonal regulatory secretion systems, which rely on the retention of pre-synthesized proteins on the ER membrane (membER, released by a cytosolic protease) or inside the ER lumen (lumER, released by an ER-luminal protease), respectively, and their release by the chemical signal-regulated proteolytic removal of an ER-retention signal, without triggering ER stress due to protein aggregates. Design of orthogonal chemically-regulated split proteases enables the combination of signals into logic functions. Its application was demonstrated on a chemically regulated therapeutic protein secretion and regulated membrane translocation of a chimeric antigen receptor (CAR) targeting cancer antigen. Regulation of the ER escape represents a platform for the design of fast-responsive and tightly-controlled modular and scalable protein secretion system for mammalian cells. Secreted proteins, such as hormones or cytokines, are key mediators in multicellular organisms. Here the authors present two genetically encoded orthogonal regulatory secretion systems that enables inducible protein release and construction of logic gates.
Collapse
|
13
|
Mahameed M, Xue S, Stefanov B, Hamri GC, Fussenegger M. Engineering a Rapid Insulin Release System Controlled By Oral Drug Administration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105619. [PMID: 35048556 PMCID: PMC8948567 DOI: 10.1002/advs.202105619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 05/14/2023]
Abstract
Rapid insulin release plays an essential role in maintaining blood-glucose homeostasis in mammalians. Patients diagnosed with type-I diabetes mellitus experience chronic and remarkably high blood-sugar levels, and require lifelong insulin injection therapy, so there is a need for more convenient and less invasive insulin delivery systems to increase patients' compliance and also to enhance their quality of life. Here, an endoplasmic-reticulum-localized split sec-tobacco etch virus protease (TEVp)-based rapamycin-actuated protein-induction device (RAPID) is engineered, which is composed of the rapamycin-inducible dimerization domains FK506 binding protein (FKBP) and FKBP-rapamycin binding protein fused with modified split sec-TEVp components. Insulin accumulation inside the endoplasmic reticulum (ER) is achieved through tagging its C-terminus with KDEL, an ER-retention signal, spaced by a TEVp cleavage site. In the presence of rapamycin, the split sec-TEVp-based RAPID components dimerize, regain their proteolytic activity, and remove the KDEL retention signal from insulin. This leads to rapid secretion of accumulated insulin from cells within few minutes. Using liver hydrodynamic transfection methodology, it is shown that RAPID quickly restores glucose homeostasis in type-1-diabetic (T1DM) mice treated with an oral dose of clinically licensed rapamycin. This rapid-release technology may become the foundation for other cell-based therapies requiring instantaneous biopharmaceutical availability.
Collapse
Affiliation(s)
- Mohamed Mahameed
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Shuai Xue
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Bozhidar‐Adrian Stefanov
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Ghislaine Charpin‐El Hamri
- Département Génie BiologiqueInstitut Universitaire de TechnologieUniversité Claude Bernard Lyon 1Villeurbanne CedexF‐69622France
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
- University of BaselFaculty of Life ScienceBaselCH‐4058Switzerland
| |
Collapse
|
14
|
Improved yield, stability, and cleavage reaction of a novel tobacco etch virus protease mutant. Appl Microbiol Biotechnol 2022; 106:1475-1492. [DOI: 10.1007/s00253-022-11786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
|
15
|
Renna P, Ripoli C, Dagliyan O, Pastore F, Rinaudo M, Re A, Paciello F, Grassi C. Engineering a switchable single‐chain
TEV
protease to control protein maturation in living neurons. Bioeng Transl Med 2022; 7:e10292. [PMID: 35600650 PMCID: PMC9115699 DOI: 10.1002/btm2.10292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/13/2021] [Accepted: 12/30/2021] [Indexed: 11/18/2022] Open
Abstract
Engineered proteases are promising tools to address physiological and pathophysiological questions as well as to develop new therapeutic approaches. Here we introduce a new genetically encoded engineered single‐chain tobacco etch virus protease, allowing to control proprotein cleavage in different compartments of living mammalian cells. We demonstrated a set of controllable proteolytic effects, including cytosolic protein cleavage, inducible gene expression, and maturation of brain‐derived neurotrophic factor (BDNF) in the secretory pathway thus showing the versatility of this technique. Of note, the secretory pathway exhibits different characteristics from the cytosol and it is difficult to target because inaccessible to some small molecules. We were able to induce ligand‐mediated BDNF maturation and monitor its effects on dendritic spines in hippocampal pyramidal cells and in the mouse brain. This strategy paves the way to dissect proteolytic cleavage product signaling in various processes as well as for future therapeutic applications.
Collapse
Affiliation(s)
- Pietro Renna
- Department of Neuroscience Università Cattolica del Sacro Cuore, 00168 Rome Italy
| | - Cristian Ripoli
- Department of Neuroscience Università Cattolica del Sacro Cuore, 00168 Rome Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome Italy
| | - Onur Dagliyan
- Department of Neurobiology Harvard Medical School Boston MA USA
| | - Francesco Pastore
- Department of Neuroscience Università Cattolica del Sacro Cuore, 00168 Rome Italy
| | - Marco Rinaudo
- Department of Neuroscience Università Cattolica del Sacro Cuore, 00168 Rome Italy
| | - Agnese Re
- Department of Neuroscience Università Cattolica del Sacro Cuore, 00168 Rome Italy
| | - Fabiola Paciello
- Department of Neuroscience Università Cattolica del Sacro Cuore, 00168 Rome Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome Italy
| | - Claudio Grassi
- Department of Neuroscience Università Cattolica del Sacro Cuore, 00168 Rome Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome Italy
| |
Collapse
|
16
|
Bayar E, Ren Y, Chen Y, Hu Y, Zhang S, Yu X, Fan J. Construction, Investigation and Application of TEV Protease Variants with Improved Oxidative Stability. J Microbiol Biotechnol 2021; 31:1732-1740. [PMID: 34528919 PMCID: PMC9705859 DOI: 10.4014/jmb.2106.06075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Tobacco etch virus protease (TEVp) is a useful tool for removing fusion tags, but wild-type TEVp is less stable under oxidized redox state. In this work, we introduced and combined C19S, C110S and C130S into TEVp variants containing T17S, L56V, N68D, I77V and S135G to improve protein solubility, and S219V to inhibit self-proteolysis. The solubility and cleavage activity of the constructed variants in Escherichia coli strains including BL21(DE3), BL21(DE3)pLys, Rossetta(DE3) and Origami(DE3) under the same induction conditions were analyzed and compared. The desirable soluble amounts, activity, and oxidative stability were identified to be reluctantly favored in the TEVp. Unlike C19S, C110S and C130S hardly impacted on decreasing protein solubility in the BL21(DE3), but they contributed to improved tolerance to the oxidative redox state in vivo and in vitro. After two fusion proteins were cleaved by purified TEVp protein containing double mutations under the oxidized redox state, the refolded disulfide-rich bovine enterokinase catalytic domain or maize peroxidase with enhanced yields were released from the regenerated amorphous cellulose via affinity absorption of the cellulose-binding module as the affinity tag.
Collapse
Affiliation(s)
- Enkhtuya Bayar
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yuanyuan Ren
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yinghua Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yafang Hu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xuelian Yu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China,Corresponding author Phone : +86-551-65786464 Fax : +86-551-65786021 E-mail:
| |
Collapse
|
17
|
He J, Nissim L, Soleimany AP, Binder-Nissim A, Fleming HE, Lu TK, Bhatia SN. Synthetic Circuit-Driven Expression of Heterologous Enzymes for Disease Detection. ACS Synth Biol 2021; 10:2231-2242. [PMID: 34464083 DOI: 10.1021/acssynbio.1c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The integration of nanotechnology and synthetic biology could lay the framework for new classes of engineered biosensors that produce amplified readouts of disease states. As a proof-of-concept demonstration of this vision, here we present an engineered gene circuit that, in response to cancer-associated transcriptional deregulation, expresses heterologous enzyme biomarkers whose activity can be measured by nanoparticle sensors that generate amplified detection readouts. Specifically, we designed an AND-gate gene circuit that integrates the activity of two ovarian cancer-specific synthetic promoters to drive the expression of a heterologous protein output, secreted Tobacco Etch Virus (TEV) protease, exclusively from within tumor cells. Nanoparticle probes were engineered to carry a TEV-specific peptide substrate in order to measure the activity of the circuit-generated enzyme to yield amplified detection signals measurable in the urine or blood. We applied our integrated sense-and-respond system in a mouse model of disseminated ovarian cancer, where we demonstrated measurement of circuit-specific TEV protease activity both in vivo using exogenously administered nanoparticle sensors and ex vivo using quenched fluorescent probes. We envision that this work will lay the foundation for how synthetic biology and nanotechnology can be meaningfully integrated to achieve next-generation engineered biosensors.
Collapse
Affiliation(s)
- Jiang He
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard−MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lior Nissim
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ava P. Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard−MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard Graduate Program in Biophysics, Harvard University, Boston, Massachusetts 02115, United States
- Microsoft Research New England, Cambridge, Massachusetts 02142, United States
| | - Adina Binder-Nissim
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Family Medicine, Meuhedet Health Maintenance Organization, Tel Aviv 62038, Israel
| | - Heather E. Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard−MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy K. Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard−MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Mohammadian H, Mahnam K, Sadeghi HM, Ganjalikhany MR, Akbari V. Rational design of a new mutant of tobacco etch virus protease in order to increase the in vitro solubility. Res Pharm Sci 2020; 15:164-173. [PMID: 32582356 PMCID: PMC7306250 DOI: 10.4103/1735-5362.283816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background and purpose: Tobacco etch virus (TEV) protease is a protease with high sequence specificity which is useful for the cleavage of fusion proteins. A major limitation of this enzyme is its relatively poor solubility. This study aimed to investigate the effects of some suggested mutations by online tools and molecular dynamics simulation to improve the solubility of TEV protease in vitro. Experimental approach: We designed a rational multi-stage process to determine the solubilizing mutations of TEV protease. At the first stage, all the possible mutations were predicted using online tools such as PoPMuSiC and Eris servers, in which five mutations include N23F, N23L, Q74L, Q74V, and Q74I were suggested for further studies. In the next step, the three dimensional structure of the wild type (WT) and the best mutations were subjected to molecular dynamic simulations to evaluate the dynamic behaviour of the obtained structures. The selected mutation was introduced into the structure using site-directed mutagenesis and expressed in Escherichia coli BL21DE3. After purification, solubility and activity of the purified mutant and WT-TEV proteases were assayed. Findings /Results: By considering the analysis of various factors such as structural and solubility properties, one mutant, N23F, was selected for in vitro studies which led to a 1.5 times increase in the solubility compared to the WT while its activity was decreased somewhat. Conclusion and implications: We propose N23F mutation, according to computational and experimental analyses for TEV proteases which resulted in a 150% increase in solubility compared to the WT.
Collapse
Affiliation(s)
- Hossein Mohammadian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Karim Mahnam
- Department of Biology, Faculty of Sciences, University of Shahrekord, Shahrekord, I.R. Iran.,Nanotechnology Research Centre, Shahrekord University, Shahrekord, I.R. Iran
| | - Hamid Mirmohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | | | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
19
|
Uehara S, Sei A, Sada M, Ito-Inaba Y, Inaba T. Installation of authentic BicA and SbtA proteins to the chloroplast envelope membrane is achieved by the proteolytic cleavage of chimeric proteins in Arabidopsis. Sci Rep 2020; 10:2353. [PMID: 32047175 PMCID: PMC7012931 DOI: 10.1038/s41598-020-59190-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/24/2020] [Indexed: 11/09/2022] Open
Abstract
To improve the photosynthetic performance of C3 plants, installing cyanobacterial bicarbonate transporters to the chloroplast inner envelope membrane (IEM) has been proposed for years. In our previous study, we successfully introduced chimeric cyanobacterial sodium-dependent bicarbonate transporters, BicA or SbtA, to the chloroplast IEM of Arabidopsis. However, the installation of authentic BicA and SbtA to the chloroplast IEM has not been achieved yet. In this study, we examined whether or not tobacco etch virus (TEV) protease targeted within chloroplasts can cleave chimeric proteins and produce authentic bicarbonate transporters. To this end, we constructed a TEV protease that carried the transit peptide and expressed it with chimeric BicA or SbtA proteins containing a TEV cleavage site in planta. Chimeric proteins were cleaved only when the TEV protease was co-expressed. The authentic forms of hemagglutinin-tagged BicA and SbtA were detected in the chloroplast IEM. In addition, cleavage of chimeric proteins at the TEV recognition site seemed to occur after the targeting of chimeric proteins to the chloroplast IEM. We conclude that the cleavage of chimeric proteins within chloroplasts is an efficient way to install authentic bicarbonate transporters to the chloroplast IEM. Furthermore, a similar approach can be applied to other bacterial plasma membrane proteins.
Collapse
Affiliation(s)
- Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ayane Sei
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Misaki Sada
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
20
|
Maule G, Casini A, Montagna C, Ramalho AS, De Boeck K, Debyser Z, Carlon MS, Petris G, Cereseto A. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nat Commun 2019; 10:3556. [PMID: 31391465 PMCID: PMC6685978 DOI: 10.1038/s41467-019-11454-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the CFTR gene. The 3272-26A>G and 3849+10kbC>T CFTR mutations alter the correct splicing of the CFTR gene, generating new acceptor and donor splice sites respectively. Here we develop a genome editing approach to permanently correct these genetic defects, using a single crRNA and the Acidaminococcus sp. BV3L6, AsCas12a. This genetic repair strategy is highly precise, showing very strong discrimination between the wild-type and mutant sequence and a complete absence of detectable off-targets. The efficacy of this gene correction strategy is verified in intestinal organoids and airway epithelial cells derived from CF patients carrying the 3272-26A>G or 3849+10kbC>T mutations, showing efficient repair and complete functional recovery of the CFTR channel. These results demonstrate that allele-specific genome editing with AsCas12a can correct aberrant CFTR splicing mutations, paving the way for a permanent splicing correction in genetic diseases.
Collapse
Affiliation(s)
- Giulia Maule
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Antonio Casini
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Claudia Montagna
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Anabela S Ramalho
- Department of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Kris De Boeck
- Department of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
- Pediatric Pulmonology, Department of Pediatrics, University Hospital Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Marianne S Carlon
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Gianluca Petris
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Anna Cereseto
- Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
21
|
Puckette M, Smith JD, Gabbert L, Schutta C, Barrera J, Clark BA, Neilan JG, Rasmussen M. Production of foot-and-mouth disease virus capsid proteins by the TEV protease. J Biotechnol 2018; 275:7-12. [DOI: 10.1016/j.jbiotec.2018.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
|
22
|
Correnti CE, Gewe MM, Mehlin C, Bandaranayake AD, Johnsen WA, Rupert PB, Brusniak MY, Clarke M, Burke SE, De Van Der Schueren W, Pilat K, Turnbaugh SM, May D, Watson A, Chan MK, Bahl CD, Olson JM, Strong RK. Screening, large-scale production and structure-based classification of cystine-dense peptides. Nat Struct Mol Biol 2018; 25:270-278. [PMID: 29483648 PMCID: PMC5840021 DOI: 10.1038/s41594-018-0033-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/23/2018] [Indexed: 12/04/2022]
Abstract
Peptides folded through interwoven disulfides display extreme biochemical properties and unique medicinal potential. However, their exploitation has been hampered by the limited amounts isolatable from natural sources and the expense of chemical synthesis. We developed reliable biological methods for high-throughput expression, screening and large-scale production of these peptides: 46 were successfully produced in multimilligram quantities, and >600 more were deemed expressible through stringent screening criteria. Many showed extreme resistance to temperature, proteolysis and/or reduction, and all displayed inhibitory activity against at least 1 of 20 ion channels tested, thus confirming their biological functionality. Crystal structures of 12 confirmed proper cystine topology and the utility of crystallography to study these molecules but also highlighted the need for rational classification. Previous categorization attempts have focused on limited subsets featuring distinct motifs. Here we present a global definition, classification and analysis of >700 structures of cystine-dense peptides, providing a unifying framework for these molecules.
Collapse
Affiliation(s)
- Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mesfin M Gewe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher Mehlin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashok D Bandaranayake
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William A Johnsen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B Rupert
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Midori Clarke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Skyler E Burke
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Kristina Pilat
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shanon M Turnbaugh
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Damon May
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alex Watson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Man Kid Chan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Roland K Strong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
23
|
Targeting protein function: the expanding toolkit for conditional disruption. Biochem J 2017; 473:2573-89. [PMID: 27574023 PMCID: PMC5003692 DOI: 10.1042/bcj20160240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/20/2016] [Indexed: 01/06/2023]
Abstract
A major objective in biological research is to understand spatial and temporal requirements for any given gene, especially in dynamic processes acting over short periods, such as catalytically driven reactions, subcellular transport, cell division, cell rearrangement and cell migration. The interrogation of such processes requires the use of rapid and flexible methods of interfering with gene function. However, many of the most widely used interventional approaches, such as RNAi or CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9), operate at the level of the gene or its transcripts, meaning that the effects of gene perturbation are exhibited over longer time frames than the process under investigation. There has been much activity over the last few years to address this fundamental problem. In the present review, we describe recent advances in disruption technologies acting at the level of the expressed protein, involving inducible methods of protein cleavage, (in)activation, protein sequestration or degradation. Drawing on examples from model organisms we illustrate the utility of fast-acting techniques and discuss how different components of the molecular toolkit can be employed to dissect previously intractable biochemical processes and cellular behaviours.
Collapse
|
24
|
Cesaratto F, Burrone OR, Petris G. Tobacco Etch Virus protease: A shortcut across biotechnologies. J Biotechnol 2016; 231:239-249. [PMID: 27312702 DOI: 10.1016/j.jbiotec.2016.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/31/2016] [Accepted: 06/10/2016] [Indexed: 11/29/2022]
Abstract
About thirty years ago, studies on the RNA genome of Tobacco Etch Virus revealed the presence of an efficient and specific protease, called Tobacco Etch Virus protease (TEVp), that was part of the Nuclear Inclusion a (NIa) enzyme. TEVp is an efficient and specific protease of 27kDa that has become a valuable biotechnological tool. Nowadays TEVp is a unique endopeptidase largely exploited in biotechnology from industrial applications to in vitro and in vivo cellular studies. A number of TEVp mutants with different rate of cleavage, stability and specificity have been reported. Similarly, a panel of different target cleavage sites, derived from the canonical ENLYFQ-G/S site, has been established. In this review we describe these aspects of TEVp and some of its multiple applications. A particular focus is on the use and molecular biology of TEVp in living cells and organisms.
Collapse
Affiliation(s)
- Francesca Cesaratto
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Oscar R Burrone
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
| | | |
Collapse
|