1
|
Pan YM, Ren QQ, Chen LY, Jiang YX, Wu JG, Zhang GX. Microcella aerolata sp. nov., isolated from electronic waste-associated bioaerosols. Arch Microbiol 2022; 204:538. [PMID: 35916974 DOI: 10.1007/s00203-022-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
A Gram-positive, non-motile, non-spore-forming and short rod-shaped actinomycete strain, designated GA224T, was isolated from electronic waste-associated bioaerosols. The optimal growth conditions for this isolate, a facultatively anaerobic bacterium, were 37 °C and pH 8.0. The cell-wall peptidoglycan type was B2γ, with 2,4-diaminobutyric acid (DAB) as the diamino acids, while the major menaquinone was MK-12. The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipids, unidentified glycolipids and an unidentified lipid. The major cellular fatty acids were anteiso-C15:0 and iso-C16:0. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GA224T fell within the genus Microcella. The draft genome of strain GA224T comprised 2,495,189 bp with a G + C content of 72.2 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain GA224T and the type strain of the type species of Microcella species were lower than 95% and 70%, respectively. Based on the phenotypic, chemotaxonomic and genomic data, strain GA224T represents a novel species, for which the name Microcella aerolata sp. nov. is proposed, with GA224T as the type strain (= GDMCC 1.2165 T = JCM 34462 T).
Collapse
Affiliation(s)
- Yi-Min Pan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qiao-Qiao Ren
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China.,Sichuan Provincial Center for Disease Control and Prevention, No. 6, Zhongxue Road, Wuhou District, Chengdu, 610041, People's Republic of China
| | - Ling-Yun Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yun-Xia Jiang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ji-Guo Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Guo-Xia Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China. .,Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Cho BC, Hardies SC, Jang GI, Hwang CY. Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6 T adapted to coastal planktonic lifestyle. BMC Genomics 2018; 19:625. [PMID: 30134835 PMCID: PMC6106888 DOI: 10.1186/s12864-018-5019-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/14/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pontimonas salivibrio strain CL-TW6T (=KCCM 90105 = JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized. RESULTS The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G + C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions. CONCLUSIONS Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.
Collapse
Affiliation(s)
- Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | - Stephen C. Hardies
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Gwang Il Jang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Chung Yeon Hwang
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| |
Collapse
|
3
|
Trincone A. Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications. Molecules 2018; 23:E901. [PMID: 29652849 PMCID: PMC6017418 DOI: 10.3390/molecules23040901] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
After generating much interest in the past as an aid in solving structural problems for complex molecules such as polysaccharides, carbohydrate-hydrolyzing enzymes of marine origin still appear as interesting biocatalysts for a range of useful applications in strong interdisciplinary fields such as green chemistry and similar domains. The multifaceted fields in which these enzymes are of interest and the scarce number of original articles in literature prompted us to provide the specialized analysis here reported. General considerations from modern (2016-2017 interval time) review articles are at start of this manuscript; then it is subsequently organized in sections according to particular biopolymers and original research articles are discussed. Literature sources like the Science Direct database with an optimized W/in search, and the Espacenet patent database were used.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|
4
|
A high-molecular-weight, alkaline, and thermostable β-1,4-xylanase of a subseafloor Microcella alkaliphila. Extremophiles 2016; 20:471-8. [DOI: 10.1007/s00792-016-0837-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
|