1
|
Schilling J, Schmid J. Comprehensive rheological analysis of structurally related acetan-like heteroexopolysaccharides from two Kozakia baliensis strains in surfactants and galactomannan blends. N Biotechnol 2024; 82:75-84. [PMID: 38750817 DOI: 10.1016/j.nbt.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Natural biopolymers become increasingly attractive as bio-based alternatives to petrol-based rheological modifiers, especially in personal care applications. However, many polysaccharides exhibit undesired properties in cosmetic applications such as limited viscosifying characteristics, unpleasant sensory properties, or incompatibility with certain formulation compounds. Here, a comprehensive rheological analysis of non-decorated acetan-like heteroexopolysaccharides derived from two Kozakia baliensis strains was performed in selected surfactant formulations. The results were compared to native xanthan gum and a genetically engineered xanthan variant, Xan∆gumFGL, which lacks any acetyl- and pyruvyl moieties and whose rheological properties are unaffected by saline environments. All four polysaccharides displayed a highly similar rheological performance in the non-ionic surfactant lauryl glucoside, while the rheological properties differed in amphoteric and anionic surfactants cocamidopropyl betaine and sodium laureth sulfate due to minor changes in side chain composition. Polysaccharide precipitation was observed in the presence of the cationic surfactant. Nevertheless, the native heteroexopolysaccharide derived from K. baliensis LMG 27018 shows significant potential as a salt-independent rheological modifier compared to the genetically engineered Xan∆gumFGL variant. In addition, blends of heteroexopolysaccharides from K. baliensis and several galactomannans displayed synergistic effects which were comparable to native xanthan gum-galactomannan blends. This study shows that heteroexopolysaccharides of K. baliensis are capable of further extending the portfolio of bio-based rheological modifiers.
Collapse
Affiliation(s)
- Julia Schilling
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Jochen Schmid
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany.
| |
Collapse
|
2
|
Fjodorova J, Held R, Hublik G, Esteban Vazquez JM, Walhorn V, Hellweg T, Anselmetti D. Tuning Xanthan Viscosity by Directed Random Coil-to-Helix Transition. Biomacromolecules 2022; 23:4493-4503. [DOI: 10.1021/acs.biomac.2c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jenny Fjodorova
- Experimental Biophysics, Physics Faculty, Bielefeld University, 33615Bielefeld, Germany
| | - Robin Held
- Experimental Biophysics, Physics Faculty, Bielefeld University, 33615Bielefeld, Germany
| | - Gerd Hublik
- Jungbunzlauer Austria AG, Pernhofen 1, 2064Wulzeshofen, Austria
| | - Jorge M. Esteban Vazquez
- Physical and Biophysical Chemistry, Chemistry Faculty, Bielefeld University, 33615Bielefeld, Germany
| | - Volker Walhorn
- Experimental Biophysics, Physics Faculty, Bielefeld University, 33615Bielefeld, Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Chemistry Faculty, Bielefeld University, 33615Bielefeld, Germany
| | - Dario Anselmetti
- Experimental Biophysics, Physics Faculty, Bielefeld University, 33615Bielefeld, Germany
| |
Collapse
|
3
|
Xanthan gum in aqueous solutions: Fundamentals and applications. Int J Biol Macromol 2022; 216:583-604. [DOI: 10.1016/j.ijbiomac.2022.06.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
4
|
Huang H, Gong Z, Zhu X, Tan W, Cai H. Xanthan gum enhances peripheral blood CIK cells cytotoxicity in serum‐free medium. Biotechnol Prog 2022; 38:e3279. [DOI: 10.1002/btpr.3279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Huimin Huang
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai P. R. China
| | - Zizhen Gong
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai P. R. China
| | - Xuejun Zhu
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai P. R. China
| | - Wen‐song Tan
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering East China University of Science and Technology Shanghai P. R. China
| |
Collapse
|
5
|
Tomofuji Y, Matsuo K, Terao K. Kinetics of denaturation and renaturation processes of double-stranded helical polysaccharide, xanthan in aqueous sodium chloride. Carbohydr Polym 2022; 275:118681. [PMID: 34742411 DOI: 10.1016/j.carbpol.2021.118681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/02/2022]
Abstract
Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements were made for three xanthan samples, a double helical polysaccharide, in 5 or 10 mM aqueous NaCl after rapid temperature change to investigate the kinetics of the conformational change between the ordered and disordered states. After the rapid heating, the CD signal mainly reflecting the carbonyl groups on the side chains quickly changed (<150 s) while the scattering intensity from SAXS around q (magnitude of the scattering vector) = 1 nm-1 changed more gradually, reflecting the main-chain conformation. The difference between CD and SAXS implies us the intermediate conformation which can be regarded as a loose double helix. The SAXS profile in the rapid cooling process showed that the loose double helical structure was constructed within 150 s, but the CD signal slowly changed with around 2 days to recover the native tight double helix.
Collapse
Affiliation(s)
- Yu Tomofuji
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Koichi Matsuo
- Hiroshiema Synchrotron Radiation Center, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan.
| | - Ken Terao
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
6
|
Wang L, Xiang D, Li C, Zhang W, Bai X. Effects of deacetylation on properties and conformation of xanthan gum. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
|
8
|
Xue S, Yan JN, Du YN, Jiang XY, Xu SQ, Wu HT. Synergistic gelation in the hybrid gel of scallop (Patinopecten yessoensis) male gonad hydrolysates and xanthan gum. J Food Sci 2021; 86:2024-2034. [PMID: 33884631 DOI: 10.1111/1750-3841.15729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 11/27/2022]
Abstract
This study evaluated the gel and microstructure properties of scallop (Patinopecten yessoensis) male gonads hydrolysates (SMGHs) combined with xanthan gum (XG). SMGHs/XG hydrogel matrix properties and structures were elucidated via different analysis tools such as rheometry, LF-NMR, FTIR, AFM, and Cryo-SEM. The addition of XG significantly improved the rheological properties of SMGHs, as indicated by 3.1-fold G' and 1.3-fold melting temperature with increasing the XG dose to 5.6 mg/ml. The corresponding decrease in the T23 relaxation time from 450.3 to 365.6 ms also signified the strong binding between SMGHs and XG. SMGHs/XG also had a higher proton density (T1 and T2 weighted images) due to the higher bound and free water content of the hybrid gel systems, respectively. Additionally, the blueshift in the amide I and II bands in SMGHs/XG further indicated stronger electrostatic interactions between SMGHs and XG. Such scenarios resulted in a well-distributed and compact network with a rougher surface of SMGHs/XG in comparison to pure SMGHs and XG, as assessed by AFM and SEM. These results suggest that SMGHs/XG gel could be a potential hybrid gel applied in the food industry. PRACTICAL APPLICATION: Scallop (Patinopecten yessoensis) male gonads are edible, but are usually discarded during processing of scallop adductor. Because of its rich nutrition and gelation properties, scallop male gonads have a potential role in developing marine source-protein as a functional food base. The SMGHs/XG binary gel would be potentially applied in delivery system in food and biological fields. Further study is undergoing to apply SMGHs/XG binary gel to embed bioactive compounds, such as curcumin and β-carotene.
Collapse
Affiliation(s)
- Shan Xue
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jia-Nan Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yi-Nan Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Xin-Yu Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Shi-Qi Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Hai-Tao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, PR China.,National Engineering Research Center of Seafood, Dalian, 116034, PR China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian, 116034, PR China
| |
Collapse
|
9
|
Wang L, Xiang D, Li C, Zhang W, Bai X. Effects of lyophilization and low-temperature treatment on the properties and conformation of xanthan gum. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Muhammed NS, Haq MB, Al-Shehri D, Rahaman MM, Keshavarz A, Hossain SMZ. Comparative Study of Green and Synthetic Polymers for Enhanced Oil Recovery. Polymers (Basel) 2020; 12:E2429. [PMID: 33096763 PMCID: PMC7589082 DOI: 10.3390/polym12102429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Several publications by authors in the field of petrochemical engineering have examined the use of chemically enhanced oil recovery (CEOR) technology, with a specific interest in polymer flooding. Most observations thus far in this field have been based on the application of certain chemicals and/or physical properties within this technique regarding the production of 50-60% trapped (residual) oil in a reservoir. However, there is limited information within the literature about the combined effects of this process on whole properties (physical and chemical). Accordingly, in this work, we present a clear distinction between the use of xanthan gum (XG) and hydrolyzed polyacrylamide (HPAM) as a polymer flood, serving as a background for future studies. XG and HPAM have been chosen for this study because of their wide acceptance in relation to EOR processes. To this degree, the combined effect of a polymer's rheological properties, retention, inaccessible pore volume (PV), permeability reduction, polymer mobility, the effects of salinity and temperature, and costs are all investigated in this study. Further, the generic screening and design criteria for a polymer flood with emphasis on XG and HPAM are explained. Finally, a comparative study on the conditions for laboratory (experimental), pilot-scale, and field-scale application is presented.
Collapse
Affiliation(s)
- Nasiru Salahu Muhammed
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (N.S.M.); (D.A.-S.)
| | - Md. Bashirul Haq
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (N.S.M.); (D.A.-S.)
| | - Dhafer Al-Shehri
- Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (N.S.M.); (D.A.-S.)
| | - Mohammad Mizanur Rahaman
- Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Alireza Keshavarz
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia;
| | - S. M. Zakir Hossain
- Department of Chemical Engineering, University of Bahrain, P.O. Box 32038 Zallaq, Bahrain;
| |
Collapse
|
11
|
|
12
|
Venkateshaiah A, Padil VV, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS. Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers (Basel) 2020; 12:E512. [PMID: 32120773 PMCID: PMC7182842 DOI: 10.3390/polym12030512] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.
Collapse
Affiliation(s)
- Abhilash Venkateshaiah
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Vinod V.T. Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Malladi Nagalakshmaiah
- IMT Lille Douai, Department of Polymers and Composites Technology and Mechanical Engineering (TPCIM), 941 rue Charles Bourseul, CS10838, F-59508 Douai, France
| | - Stanisław Waclawek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
13
|
|
14
|
Gel properties of xanthan containing a single repeating unit with saturated pyruvate produced by an engineered Xanthomonas campestris CGMCC 15155. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Novel Endotype Xanthanase from Xanthan-Degrading Microbacterium sp. Strain XT11. Appl Environ Microbiol 2019; 85:AEM.01800-18. [PMID: 30413476 DOI: 10.1128/aem.01800-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2018] [Indexed: 11/20/2022] Open
Abstract
Under general aqueous conditions, xanthan appears in an ordered conformation, which makes its backbone largely resistant to degradation by known cellulases. Therefore, the xanthan degradation mechanism is still unclear because of the lack of an efficient hydrolase. Here, we report the catalytic properties of MiXen, a xanthan-degrading enzyme identified from the genus Microbacterium MiXen is a 952-amino-acid protein that is unique to strain XT11. Both the sequence and structural features suggested that MiXen belongs to a new branch of the GH9 family and has a multimodular structure in which a catalytic (α/α)6 barrel is flanked by an N-terminal Ig-like domain and by a C-terminal domain that has very few homologues in sequence databases and functions as a carbohydrate-binding module (CBM). Based on circular dichroism, shear-dependent viscosity, and reducing sugar and gel permeation chromatography analysis, we demonstrated that recombinant MiXen efficiently and randomly cleaved glucosidic bonds within the highly ordered xanthan substrate. A MiXen mutant free of the C-terminal CBM domain partially lost its xanthan-hydrolyzing ability because of decreased affinity toward xanthan, indicating the CBM domain assisted MiXen in hydrolyzing highly ordered xanthan via recognizing and binding to the substrate. Furthermore, side chain substituents and the terminal mannosyl residue significantly influenced the activity of MiXen via the formation of barriers to enzymolysis. Overall, the results of this study provide insight into the hydrolysis mechanism and enzymatic properties of a novel endotype xanthanase that will benefit future applications.IMPORTANCE This work characterized a novel endotype xanthanase, MiXen, and elucidated that the C-terminal carbohydrate-binding module of MiXen could drastically enhance the hydrolysis activity of the enzyme toward highly ordered xanthan. Both the sequence and structural analysis demonstrated that the catalytic domain and carbohydrate-binding module of MiXen belong to the novel branch of the GH9 family and CBMs, respectively. This xanthan cleaver can help further reveal the enzymolysis mechanism of xanthan and provide an efficient tool for the production of molecular modified xanthan with new physicochemical and physiological functions.
Collapse
|
16
|
|
17
|
Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data. J Biotechnol 2017; 253:55-61. [DOI: 10.1016/j.jbiotec.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/18/2022]
|