1
|
Liu L, Ouyang Z, Hu C, Li J. Quantifying direct CO 2 emissions from organic manure fertilizer and maize residual roots using 13C labeling technique: A field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167603. [PMID: 37806595 DOI: 10.1016/j.scitotenv.2023.167603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Organic manure compost offers benefits like enhanced crop yield, improved soil health, and increased soil carbon storage. However, its application might elevate direct CO2 emissions from organic matter decomposition. Beyond manure compost, significant sources of CO2 emissions in agricultural settings are from residual roots and root exudates of pre-crops, and soil carbon. Quantifying the contribution of these sources to CO2 emissions is crucial for maximizing carbon reduction in crop-livestock systems, yet field studies have not assessed this contribution. Our study at the Yucheng field station in Shandong Province, China employed 13C labeling on summer maize to generate 13C-labeled manure compost and maize root, which is used to differentiate CO2 emissions from these sources. Our results revealed novel insights into the magnitude and patterns of CO2 emissions from these sources. The emission pattern of 13C-CO2 derived from manure compost, root and root exudates was similar, but the magnitude differed. Specifically, manure compost accounted for 5 % of the total CO2 emissions, while residual roots and root exudates contributed 2 % and 57 %, respectively, suggesting a higher labile carbon content in root exudates. The remaining 36 % of CO2 emissions was derived from the soil and other sources. CO2 emission factors were 6 % for manure compost, 12 % for roots, and 2 % for root exudates. By quantifying the direct emissions from manure compost, residual roots, root exudates, and soil, our study highlights the dominant role of managing root exudates in overall CO2 emissions. These findings can guide targeted carbon reduction strategies, emphasizing the importance of managing root exudates and understanding the relative innocuousness of manure compost applications in the context of CO2 emissions. This novel research quantifies the direct contribution of individual manure compost to CO2 emissions, providing valuable data for carbon cycle models and improving understanding of CO2 contributions from new carbon inputs.
Collapse
Affiliation(s)
- Liting Liu
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhu Ouyang
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
| | - Jing Li
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Shangjie C, Yongqiong W, Fuqing X, Zhilin X, Xiaoping Z, Xia S, Juan L, Tiantao Z, Shibin W. Synergistic effects of vegetation and microorganisms on enhancing of biodegradation of landfill gas. ENVIRONMENTAL RESEARCH 2023; 227:115804. [PMID: 37003556 DOI: 10.1016/j.envres.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
The uncontrolled release of landfill gas represents a significant hazard to both human health and ecological well-being. However, the synergistic interactions of vegetation and microorganisms can effectively mitigate this threat by removing pollutants. This study provides a comprehensive review of the current status of controlling landfill gas pollution through the process of revegetation in landfill cover. Our survey has identified several common indicator plants such as Setaria faberi, Sarcandra glabra, and Fraxinus chinensis that grow in covered landfill soil. Local herbaceous plants possess stronger tolerance, making them ideal for the establishment of closed landfills. Moreover, numerous studies have demonstrated that cover plants significantly promote methane oxidation, with an average oxidation capacity twice that of bare soil. Furthermore, we have conducted an analysis of the interrelationships among vegetation, landfill gas, landfill cover soil, and microorganisms, thereby providing a detailed understanding of the potential for vegetation restoration in landfill cover. Additionally, we have summarized studies on the rhizosphere effect and have deduced the mechanisms through which plants biodegrade methane and typical non-methane pollutants. Finally, we have suggested future research directions to better control landfill gas using vegetation and microorganisms.
Collapse
Affiliation(s)
- Chen Shangjie
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wang Yongqiong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xu Fuqing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xing Zhilin
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Zhang Xiaoping
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Su Xia
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Li Juan
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China
| | - Zhao Tiantao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wan Shibin
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
3
|
Wang J, Wang C, Chu YX, Tian G, He R. Characterization of methanotrophic community and activity in landfill cover soils under dimethyl sulfide stress. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 161:263-274. [PMID: 36917925 DOI: 10.1016/j.wasman.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Landfill cover soil is the environmental interface between landfills and the atmosphere and plays an important role in mitigating CH4 emission from landfills. Here, stable isotope probing microcosms with CH4 or CH4 and dimethyl sulfide (DMS) were carried out to characterize activity and community structure of methanotrophs in landfill cover soils under DMS stress. The CH4 oxidation activity in the landfill cover soils was not obviously influenced at the DMS concentration of 0.05%, while it was inhibited at the DMS concentrations of 0.1% and 0.2%. DMS-S was mainly oxidized to sulfate (SO42-) in the landfill cover soils. In the landfill cover soils, DMS could inhibit the expression of bacteria and decrease the abundances of pmoA and mmoX genes, while it could prompt the expression of pmoA and mmoX genes. γ-Proteobacteria methanotrophs including Methylocaldum, Methylobacter, Crenothrix and unclassified Methylococcaceae and α-Proteobacteria methanotrophs Methylocystis dominated in assimilating CH4 in the landfill cover soils. Of them, Methylobacter and Crenothrix had strong tolerance to DMS or DMS could promote the growth and activity of Methylobacter and Crenothrix, while Methylocaldum had weak tolerance to DMS and showed an inhibitory effect. Metagenomic analyses showed that methanotrophs had the genes of methanethiol oxidation and could metabolize CH4 and methanethiol simultaneously in the landfill cover soils. These findings suggested that methanotrophs might metabolize sulfur compounds in the landfill cover soils, which may provide the potential application in engineering for co-removal of CH4 and sulfur compounds.
Collapse
Affiliation(s)
- Jing Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Chen Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guangming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Randazzo A, Zorzi F, Venturi S, Bicocchi G, Viti G, Tatàno F, Tassi F. Degradation of biogas in a simulated landfill cover soil at laboratory scale: Compositional changes of main components and volatile organic compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:229-241. [PMID: 36577274 DOI: 10.1016/j.wasman.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A laboratory experiment lasting 28 days was run to simulate a typical landfill system and to investigate the compositional changes affecting the main components (CH4, CO2, and H2) and nonmethane volatile organic compounds from biogas generated by anaerobic digestion of food waste and passing through a soil column. Gas samples were periodically collected from both the digester headspace and the soil column at increasing distances from the biogas source. CH4 and H2 were efficiently degraded along the soil column. The isotopic values of δ13C measured in CH4 and CO2 from the soil column were relatively enriched in 13C compared to the biogas. Aromatics and alkanes were the most abundant groups in the biogas samples. Among these compounds, alkylated benzenes and long-chain C3+ alkanes were significantly degraded within the soil column, whereas benzene and short-chain alkanes were recalcitrant. Terpene and O-substituted compounds were relatively stable under oxidising conditions. Cyclic, alkene, S-substituted, and halogenated compounds, which exhibited minor amounts in the digester headspace, were virtually absent in the soil column. These results pointed out how many recalcitrant potentially toxic and polluting compounds tend to be relatively enriched along the soil column, claiming action to minimise diffuse landfill gas (LFG) emissions. The proposed experimental approach represents a reliable tool for investigating the attenuation capacities of landfill cover soils for LFG components and developing optimised covers by adopting proper soil treatments and operating conditions to improve their degradation efficiencies.
Collapse
Affiliation(s)
- Antonio Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy.
| | - Francesca Zorzi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gregorio Viti
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Fabio Tatàno
- DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
5
|
Huang D, Du Y, Xu Q, Ko JH. Quantification and control of gaseous emissions from solid waste landfill surfaces. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114001. [PMID: 34731706 DOI: 10.1016/j.jenvman.2021.114001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Landfilling is the most common option for solid waste disposal worldwide. Landfill sites can emit significant quantities of greenhouse gases (GHGs; e.g., methane, carbon dioxide, and nitrous oxide) and release toxic and odorous compounds (e.g., sulfides). Due to the complex composition and characteristics of landfill surface gas emissions, the quantification and control of landfill emissions are challenging. This review attempts to comprehensively understand landfill emission quantification and control options by primarily focusing on GHGs and odor compounds. Landfill emission quantification was highlighted by combining different emissions monitoring approaches to improve the quality of landfill emission data. Also, landfill emission control requires a specific approach that targets emission compounds or a systematic approach that reduces overall emissions by combining different control methods since the diverse factors dominate the emissions of various compounds and their transformation. This integrated knowledge of emission quantification and control options for GHGs and odor compounds is beneficial for establishing field monitoring campaigns and incorporating mitigation strategies to quantify and control multiple landfill emissions.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055, China; School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yue Du
- Key Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055, China
| | - Qiyong Xu
- Key Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Guangdong, 518055, China
| | - Jae Hac Ko
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
6
|
Senanu BM, Boakye P, Oduro-Kwarteng S, Sewu DD, Awuah E, Obeng PA, Afful K. Inhibition of ammonia and hydrogen sulphide as faecal sludge odour control in dry sanitation toilet facilities using plant waste materials. Sci Rep 2021; 11:17803. [PMID: 34493737 PMCID: PMC8423729 DOI: 10.1038/s41598-021-97016-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
On-site dry sanitation facilities, although cheaper than wet sanitation systems, suffer from high malodour and insect nuisance as well as poor aesthetics. The high odour deters users from utilizing dry sanitation toilets as an improved facility leading to over 20% open defecation in Sub-Saharan Africa. To address this malodour concern, this study first assessed odour levels, using hydrogen sulphide (H2S) and ammonia (NH3) as indicators, on two dry sanitation facilities named T1 and T2. The potential of using biomass (sawdust, rice husk, moringa leaves, neem seeds), ash (coconut husk, cocoa husk) or biochar (sawdust, rice husk, bamboo) as biocovers to remove or suppress odour from fresh faecal sludge (FS) over a 12-day period was investigated. Results showed that the odour levels for H2S in both T1 (3.17 ppm) and T2 (0.22 ppm) were above the threshold limit of 0.05 ppm, for unpleasantness in humans and vice versa for NH3 odour levels (T1 = 6.88 ppm; T2 = 3.16 ppm; threshold limit = 30 ppm limit). The biomasses exhibited low pH (acidic = 5–7) whereas the biochars and ashes had higher pHs (basic = 8–13). Basic biocovers were more effective at H2S emission reduction (80.9% to 96.2%) than acidic biocovers. The effect of pH on suppression of NH3 was determined to be statistically insignificant at 95% confidence limit. In terms of H2S and NH3 removal, sawdust biochar was the most effective biocover with odour abatement values of 96.2% and 74.7%, respectively. The results suggest that biochar produced from locally available waste plant-based materials, like sawdust, can serve as a cost-effective and sustainable way to effectively combat odour-related issues associated with dry sanitation facilities to help stop open defecation.
Collapse
Affiliation(s)
- Bernice Mawumenyo Senanu
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana
| | - Patrick Boakye
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana.
| | - Sampson Oduro-Kwarteng
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana.
| | - Divine Damertey Sewu
- Life Green Technology Co. Ltd., 875 Yuseong-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea.,Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon, 34158, Republic of Korea
| | - Esi Awuah
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana
| | - Peter Appiah Obeng
- Department of Water and Sanitation, University of Cape Coast, Cape Coast, Ghana
| | - Kobina Afful
- Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, PMB, UPO, Kumasi, Ghana
| |
Collapse
|
7
|
|
8
|
Tikhomirova TS, But SY. Laboratory scale bioreactor designs in the processes of methane bioconversion: Mini-review. Biotechnol Adv 2021; 47:107709. [PMID: 33548452 DOI: 10.1016/j.biotechadv.2021.107709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
Abstract
Global methane emissions have been steadily increasing over the past few decades, exerting a negative effect on the environment. Biogas from landfills and sewage treatment plants is the main anthropogenic source of methane. This makes methane bioconversion one of the priority areas of biotechnology. This process involves the production of biochemical compounds from non-food sources through microbiological synthesis. Methanotrophic bacteria are a promising tool for methane bioconversion due to their ability to use this greenhouse gas and to produce protein-rich biomass, as well as a broad range of useful organic compounds. Currently, methane is used not only to produce biomass and chemical compounds, but also to increase the efficiency of water and solid waste treatment. However, the use of gaseous substrates in biotechnological processes is associated with some difficulties. The low solubility of methane in water is one of the major problems. Different approaches have been involved to encounter these challenges, including different bioreactor and gas distribution designs, solid carriers and bulk sorbents, as well as varying air/oxygen supply, the ratio of volumetric flow rate of gas mixture to its consumption rate, etc. The aim of this review was to summarize the current data on different bioreactor designs and the aspects of their applications for methane bioconversion and wastewater treatment. The bioreactors used in these processes must meet a number of requirements such as low methane emission, improved gas exchange surface, and controlled substrate supply to the reaction zone.
Collapse
Affiliation(s)
- Tatyana S Tikhomirova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Institutskaya 7, Pushchino, Moscow Region 142290, Russia.
| | - Sergey Y But
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», Prospect Nauki 5, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
9
|
Duan Z, Scheutz C, Kjeldsen P. Trace gas emissions from municipal solid waste landfills: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 119:39-62. [PMID: 33039980 DOI: 10.1016/j.wasman.2020.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Trace gas emissions from municipal solid waste (MSW) landfills have received increasing attention in recent years. This paper reviews literature published between 1983 and 2019, focusing on (i) the origin and fate of trace gas in MSW landfills, (ii) sampling and analytical techniques, (iii) quantitative emission measurement techniques, (iv) concentration and surface emission rates of common trace compounds at different landfill units and (v) the environmental and health concerns associated with trace gas emissions from MSW landfills. Trace gases can be produced from waste degradation, direct volatilisation of chemicals in waste products or from conversions/reactions between other compounds. Different chemical groups dominate the different waste decomposition stages. In general, organic sulphur compounds and oxygenated compounds are connected with fresh waste, while abundant hydrogen sulphide, aromatics and aliphatic hydrocarbons are usually found during the methane fermentation stage. Selection of different sampling, analytical and emission rate measurement techniques might generate different results when quantifying trace gas emission from landfills, and validation tests are needed to evaluate the reliability of current methods. The concentrations of trace gases and their surface emission rates vary largely from site to site, and fresh waste dumping areas and uncovered waste surfaces are the most important fugitive emission sources. The adverse effects of trace gas emission are not fully understood, and more emission data are required in future studies to assess quantitatively their environmental impacts as well as health risks.
Collapse
Affiliation(s)
- Zhenhan Duan
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Charlotte Scheutz
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Kjeldsen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
10
|
Huang D, Yang L, Xu W, Chen Q, Ko JH, Xu Q. Enhancement of the methane removal efficiency via aeration for biochar-amended landfill soil cover. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114413. [PMID: 32220690 DOI: 10.1016/j.envpol.2020.114413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
Methane (CH4) mitigation of biocovers or biofilters for landfills is influenced by the bed material and oxygen availability. The improvement of active aeration for the CH4 oxidation efficiency of biochar-amended landfill soil cover was investigated over a period of 101 days. There were column 1 as the control group, column 2 with biochar amending the soil cover, and column 3 with daily active aeration besides the same biochar amendment. All groups were inoculated with enriched methane oxidation bacteria (MOB). The average CH4 removal efficiency was up to 78.6%, 85.2% and 90.6% for column 1, 2, and 3, respectively. The depth profiles of CH4 oxidation efficiencies over the whole period also showed that the stimulation of CH4 oxidation by biochar amendment was apparent in the top 35 cm but became very faint after two months. This probably was due to the rapid depletion of nitrogen nutrition caused by enhanced methanotrophic activities. While through aeration, CH4 oxidation efficiency was further improved for column 3 than column 2. This enhancement also lasted for the whole period with a reduced decline of CH4 oxidation. Finally, the major MOB Methylocystis, commonly found in the three columns, were most abundant in the top 35 cm for column 3. A more balanced ratio of MOB and more homogeneous microbial community structures across different soil depths were also the results of active aeration.
Collapse
Affiliation(s)
- Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Luning Yang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Wenjun Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Jae Hac Ko
- Department of Environmental Engineering, College of Ocean Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
11
|
Zhan LT, Wu T, Feng S, Lan JW, Chen YM. A simple and rapid in situ method for measuring landfill gas emissions and methane oxidation rates in landfill covers. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:588-593. [PMID: 31856695 DOI: 10.1177/0734242x19893007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A newly developed static chamber method with a laser methane detector and a biogas analyser was proposed to measure the landfill gas emissions and methane (CH4) oxidation rates in landfill covers. The method relied on a laser methane detector for measuring CH4 concentration, avoiding gas samplings during test and hence the potential interference of gas compositions inside the chamber. All the measurements could be obtained on site. The method was applied to determine the landfill gas emissions and CH4 oxidation rates in a full-scale loess gravel capillary barrier cover constructed in landfill. Both laboratory calibration and in-situ tests demonstrated that fast (i.e. <20 min) and accurate measurements could be obtained by the proposed method. The method is capable of capturing the significant spatial and temporal variations of the landfill gas emissions and CH4 oxidation rates in landfill site.
Collapse
Affiliation(s)
- Liang-Tong Zhan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou, China
| | - Tao Wu
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou, China
| | - Song Feng
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou, China
- College of Civil Engineering, Fuzhou University, Fuzhou, China
- Formerly, Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology
| | - Ji-Wu Lan
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou, China
| | - Yun-Min Chen
- MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Mitigation of Methane, NMVOCs and Odor Emissions in Active and Passive Biofiltration Systems at Municipal Solid Waste Landfills. SUSTAINABILITY 2020. [DOI: 10.3390/su12083203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biofiltration systems are emerging technological solutions for the removal of methane and odors from landfill gas when flaring is no longer feasible. This work analyzed and compared two full-scale biofiltration systems: biofilter and biowindows. The emission mitigation of methane, non-methane volatile organic compounds (NMVOCs) and odors during a two-year management and monitoring period was studied. In addition to diluted methane, more than 50 NMVOCs have been detected in the inlet raw landfill gas and the sulfur compounds resulted in the highest odor activity value. Both systems, biofilter and biowindows, were effective for the oxidation of methane (58.1% and 88.05%, respectively), for the mitigation of NMVOCs (higher than 80%) and odor reduction (99.84% and 93.82% respectively). As for the biofilter monitoring, it was possible to define the oxidation efficiency trend and in fact to guarantee that for an oxidation efficiency of 80%, the methane load must be less than 6.5 g CH4/m2h with an oxidation rate of 5.2 g CH4/m2h.
Collapse
|
13
|
Bian R, Shi W, Chai X, Sun Y. Effects of plant radial oxygen loss on methane oxidation in landfill cover soil: A simulative study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:56-64. [PMID: 31669675 DOI: 10.1016/j.wasman.2019.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Radial oxygen loss (ROL) by the spreading root systems of vegetation can improve soil aeration for subsequent oxidation of methane (CH4) by microbes in landfill cover soils. This study proposes a theoretical model that elucidated the effects of ROL on microbial oxidation of CH4 to understand landfill gas transportation and oxidation in landfill cover soils. Parametric analyses were conducted to investigate the effects of root depth, root architecture, and ROL rate on the CH4 oxidation efficiency of landfill cover soils. The simulation results suggested that disregarding O2 emissions by plants root systems could underestimate the CH4 oxidation efficiency, especially when the water content ranged from 20% to 35%. Additionally, plants with a parabolic root architecture indicated 7-13% higher CH4 oxidation efficiency than other root architectures, i.e., uniform, triangular, and exponential. The CH4 oxidation efficiency increased rapidly at root depths less than 0.25 m. Therefore, plants characterized by a parabolic root architecture, longer root length, and higher ROL capacity should be selected as the preferred species for mitigating CH4 emissions from landfills in humid areas.
Collapse
Affiliation(s)
- Rongxing Bian
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Wei Shi
- Xi'an Solid Waste Administration, Xi'an 710038, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
14
|
Jung H, Oh KC, Ryu HW, Jeon JM, Cho KS. Simultaneous mitigation of methane and odors in a biowindow using a pipe network. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:45-56. [PMID: 31520912 DOI: 10.1016/j.wasman.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, a biowindow with a piped gas collection network is proposed as an area-efficient landfill gas treatment system. A 9-m2 biowindow was constructed for treating landfill gas collected from an area of 450 m2 in a sanitary landfill, and its performance was evaluated for 224 days. The methane removal efficiency was 59-100% at 146.3-675.1 g-CH4 m-2 d-1. Odorous compounds were also removed by the biowindow, with a complex odor intensity removal rate of 93-100%. In particular, the removal efficiency for hydrogen sulfide and methanethiol, major contributors to the complex odor intensity, was 97% and 91%, respectively. Metagenomic analysis showed that the dominant bacterial genera shifted from Acinetobacter and Pseudomonas to Methylobacter and Methylocaldum due to the high concentration of methane. A high bacterial diversity was maintained, which may have contributed to the robust performance of the biowindow against environmental fluctuations. At 1/50th of the size of conventional biocovers, the proposed biowindow can greatly reduce the required installation area and represents a competitive method for the simultaneous treatment of methane and odor in landfills.
Collapse
Affiliation(s)
- Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Cheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Hee-Wook Ryu
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
15
|
Huang D, Yang L, Ko JH, Xu Q. Comparison of the methane-oxidizing capacity of landfill cover soil amended with biochar produced using different pyrolysis temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133594. [PMID: 31377353 DOI: 10.1016/j.scitotenv.2019.133594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The in-situ mitigation of methane (CH4) in landfill gas using landfill cover soil (LCS) is a cost-effective approach, but its efficiency needs to be enhanced. In this study, we incorporated an enriched methane-oxidizing bacteria (MOB) consortium into LCS and established four biochar-amended LCS groups with biochar produced at 300 °C (BC300), 400 °C (BC400), 500 °C (BC500), and 600 °C (BC600). The purpose was to evaluate the CH4 oxidation capacity of biochar-amended LCS after inoculation with MOB and to investigate how the physicochemical properties of biochar that are influenced by the pyrolysis temperature affect the performance and microbial activity of biochar-amended LCS. It was found that a 15% volume ratio (representing a mass ratio of 2.49%-2.78%) for biochar amendment in LCS enhanced CH4 removal efficiency, with the highest removal observed to be 46% for BC400-amended LCS compared to 30% for the original LCS. In addition, CH4 adsorption by the biochar was not observed, and a 15% mass ratio for biochar in the LCS had no or a negative impact. Besides improving the water-holding capacity and gas permeability of LCS, other possible advantages of biochar amendment in terms of CH4 oxidization include greater retention of nutrients, electron acceptors, and exchangeable cations, as well as introducing iron ions. It was also found that CH4 oxidation capacity and the methanotroph activity of biochar-amended LCS did not continue to increase with higher pyrolysis temperatures, even though higher micropore volumes and surface areas were obtained at higher pyrolysis temperatures. From this study, BC400 was identified as the optimal choice for the best performance in terms of enhancing both the CH4 oxidation capacity of the amended LCS and the growth of type II methanotroph Methylocystaceae, which can possibly be attributed to having the highest cation exchange capacity of the four biochars.
Collapse
Affiliation(s)
- Dandan Huang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Luning Yang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Jae Hac Ko
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
16
|
Lee YY, Hong S, Cho KS. Design and shelf stability assessment of bacterial agents for simultaneous removal of methane and odors. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:906-913. [PMID: 31094279 DOI: 10.1080/10934529.2019.1607651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/03/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Two types of solid bacterial agents for the simultaneous removal of methane and odor were designed using humic soil (De-MO-1) and the mixture of humic soil and tobermolite (De-MO-2) as biocarriers. The bacterial consortium, having the removability of methane and dimethyl sulfide (DMS), was immobilized in the biocarriers, and then stored at room temperature for 375 days without additional treatment. Although the lag period, of which the incubation time required for removing methane and DMS, tended to increase over the storage period, the removability of methane and DMS was maintained during 375 days in both bacterial agents. Key bacteria associated with the removal of methane and odors (Streptomyces, Promicromonospora, Paracoccus, Lysobacter, Sphingopyxis and Methylosystis) could keep their abundance during the storage period. The richness and evenness values of the bacterial communities in De-MO-1 and De-MO-2 ranged 4.89 ∼ 6.50 and 0.89 ∼ 0.98, respectively, indicating that high bacterial diversity was maintained during the storage period. The results suggest that De-MO-1 and De-MO-2, designed for the simultaneous removal of methane and odors, had shelf stabilities over one year.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Sodaneath Hong
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | - Kyung-Suk Cho
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| |
Collapse
|
17
|
Ding Y, Xiong J, Zhou B, Wei J, Qian A, Zhang H, Zhu W, Zhu J. Odor removal by and microbial community in the enhanced landfill cover materials containing biochar-added sludge compost under different operating parameters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:679-690. [PMID: 31109570 DOI: 10.1016/j.wasman.2019.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/29/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Odor problem has become a growing concern for municipal solid waste (MSW) operators and communities located close to landfill sites. In this study, nine laboratory-scale landfill reactors were used to simulate in-situ odor control by a novel landfill cover material consisting of biochar-added sludge compost under various operating parameters. Characterization of odor removal and microbial community in the cover layer under various operating parameters was conducted using gas chromatograph-mass spectrometry and 454 high-throughput pyrosequencing, respectively. Results showed that H2S (76.9-86.0%) and volatile organic sulfur compounds (VOSCs) (12.3-21.7%) were dominant according to their theoretical generated odor concentrations. The total odor REs calculated using the theoretical odor concentrations in the landfill reactors were different than using the measured odor values, which were ranked from high to low as: R6 > R5 > R7 > R4 > R8 > R9 > R3 > R2 > R1, showing the largest discrepancy of 25.3%. The optimum combination of operating parameters based on the theoretical odor concentration was different with that based on the measured odor concentrations. Moreover, although Firmicutes (12.21-91.48%), Proteobacteria (3.55-51.03%), and Actinobacteria (4.01-47.39%) were in general the three major bacterial phyla found in the landfill covers, the detailed bacterial communities in the cover materials of the simulated reactors varied with various operating parameters. Alicyclobacillus and Tuberibacillus showed positive correlations with the removal efficiencies (REs) of chlorinated compounds, H2S, aromatic compounds, volatile organic sulfur compounds (VOSCs), and organic acids. The correlations of Rhodanobacter, Gemmatimonas, Flavisolibacter and Sphingomonas were strongly positive with ammonia RE and relatively positive with REs of organic acids, VOSCs, and aromatic compounds. These findings are instrumental in understanding the relationship between the structure of microbial communities and odor removal performances, and in developing techniques for in-situ odor control at landfills.
Collapse
Affiliation(s)
- Ying Ding
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China.
| | - Junsheng Xiong
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China; Hubei Academy of Environmental Sciences, Wuhan 430070, PR China
| | - Bowei Zhou
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Jiaojiao Wei
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Aiai Qian
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Hangjun Zhang
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Weiqin Zhu
- Department of Environmental Engineering, Hangzhou Normal University, Hangzhou 310016, PR China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310016, PR China
| | - Jun Zhu
- Department of Biological & Agricultural Engineering, University of Arkansas, AR 72701, USA.
| |
Collapse
|
18
|
Yun J, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. Odor mitigation and bacterial community dynamics in on-site biocovers at a sanitary landfill in South Korea. ENVIRONMENTAL RESEARCH 2018; 166:516-528. [PMID: 29957505 DOI: 10.1016/j.envres.2018.06.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Unpleasant odors emitted from landfills have been caused environmental and societal problems. For odor abatement, two pilot-scale biocovers were installed at a sanitary landfill site in South Korea. Biocovers PBC1 and PBC2 comprised a soil mixture with different ratios of earthworm casts as an inoculum source and were operated for 240 days. Their odor removal efficiencies were evaluated, and their bacterial community structures were characterized using pyrosequencing. In addition, the correlation between odor removability and bacterial community dynamics was assessed using network analysis. The removal efficiency of complex odor intensity in the two biocovers ranged from 81.1% to 97.8%. Removal efficiencies of sulfur-containing odors (hydrogen sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide), which contributed most to complex odor intensity, were greater than 91% in both biocovers. Despite the fluctuations in ambient temperature (-8.2 to 31.3 °C) and inlet complex odor intensity (10,000-42,748 of odor dilution ratio), biocovers PBC1 and PBC2 displayed stable deodorizing performance. A high ratio of earthworm casts as an inoculum source led to high odor removability during the first 25 days of operation, but different mixing ratios of earthworm casts did not significantly affect overall odor removability. A bacterial community analysis showed that Methylobacter, Arthrobacter, Acinetobacter, Rhodanobacter, and Pedobacter were the dominant genera in both biocovers. Network analysis results indicated that Steroidobacter, Cystobacter, Methylosarcina, Solirubrobacter, and Pseudoxanthomonas increased in relative abundance with time and were major contributors to odor removal, although these bacteria had a relatively low abundance compared to the overall bacterial community. These data contribute to a more comprehensive understanding of the relationship between bacterial community dynamics and deodorizing performance in biocovers.
Collapse
Affiliation(s)
- Jeonghee Yun
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hee-Wook Ryu
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Kyung-Cheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
19
|
|
20
|
Xing Z, Zhao T, Zhang L, Gao Y, Liu S, Yang X. Effects of copper on expression of methane monooxygenases, trichloroethylene degradation, and community structure in methanotrophic consortia. Eng Life Sci 2018; 18:236-243. [PMID: 32624902 DOI: 10.1002/elsc.201700153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 11/08/2022] Open
Abstract
Copper plays a key role in regulating the expression of enzymes that promote biodegradation of contaminants in methanotrophic consortia (MC). Here, we utilized MC isolated from landfill cover to investigate cometabolic degradation of trichloroethylene (TCE) at nine different copper (Cu2+) concentrations. The results demonstrated that an increase in Cu2+ concentration from 0 to 15 μM altered the specific first-order rate constant k 1,TCE, the expression levels of methane monooxygenase (pmoA and mmoX) genes, and the specific activity of soluble methane monooxygenase (sMMO). High efficiency TCE degradation (95%) and the expression levels of methane monooxygenase (MMO) were detected at a Cu2+ concentration of 0.03 μM. Notably, sMMO-specific activity ranged from 74.41 nmol/(mgcell h) in 15 μM Cu2+ to 654.99 nmol/(mgcell h) in 0.03 μM Cu2+, which contrasts with cultures of pure methanotrophs in which sMMO activity is depressed at high Cu2+ concentrations, indicating a special regulatory role for Cu2+ in MC. The results of MiSeq pyrosequencing indicated that higher Cu2+ concentrations stimulated the growth of methanotrophic microorganisms in MC. These findings have important implications for the elucidation of copper-mediated regulatory mechanisms in MC.
Collapse
Affiliation(s)
- Zhilin Xing
- Faculty of Urban Construction and Environment Engineering Chongqing University Chongqing P. R. China.,School of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing P. R. China
| | - Tiantao Zhao
- Faculty of Urban Construction and Environment Engineering Chongqing University Chongqing P. R. China.,School of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing P. R. China
| | - Lijie Zhang
- School of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing P. R. China
| | - Yanhui Gao
- Faculty of Urban Construction and Environment Engineering Chongqing University Chongqing P. R. China.,School of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing P. R. China
| | - Shuai Liu
- School of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing P. R. China
| | - Xu Yang
- School of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing P. R. China
| |
Collapse
|
21
|
Choi H, Ryu HW, Cho KS. Biocomplex textile as an alternative daily cover for the simultaneous mitigation of methane and malodorous compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:339-348. [PMID: 29129467 DOI: 10.1016/j.wasman.2017.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Space-saving biocomplex textiles, which can be used as covers or rolled up as needed, have been demonstrated as alternative daily covers for the simultaneous mitigation of greenhouse gases (GHGs) and odors in landfills. The biocomplex textiles were made by inserting inorganic biocarriers (perlite (P), tobermolite (T) and their mixture (P/T)) between nonwoven fabrics. Methane (CH4) and dimethyl sulfide (DMS) were used as model compounds for GHGs and odors, and a CH4 and DMS co-degrading microbial consortium was used as an inoculum source. CH4 and DMS could be biologically degraded by methanotrophs and sulfur-oxidizing bacteria in the biocomplex textiles. Both biocomplex textiles made with either P or T were able to maintain the removability for CH4 and DMS after storage for 70 days, although their removal efficiencies for CH4 and DMS were 70-71% and 62-65% of those before storage, respectively. CH4 and DMS were simultaneously removed in lab-scale landfill simulation reactors employed with the biocomplex textiles. After 17 days of starvation, only 2-3 days were needed to recover their removability. Among the 3 kinds of biocarriers evaluated, the biocomplex textile generated using the P/T showed the highest removability and was the most stable. The maximum elimination capacities of the biocomplex textile generated with the P/T were 11.5 g-CH4·m-2-fabric·d-1 and 0.5 g-DMS·m-2-fabric·d-1, respectively. These results suggest that the biocomplex textiles are promising alternative daily covers to mitigate the emission of greenhouse gas and odor in operational landfills.
Collapse
Affiliation(s)
- Hyungjoo Choi
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Hee Wook Ryu
- Department of Chemical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
22
|
Lee YY, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 71:277-286. [PMID: 29089227 DOI: 10.1016/j.wasman.2017.10.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Landfills are key anthropogenic emission sources for odors and methane. For simultaneous mitigation of odors and methane emitted from landfills, a pilot-scale biocover (soil:perlite:earthworm cast:compost, 6:2:1:1, v/v) was constructed at a sanitary landfill in South Korea, and the biocover performance and its bacterial community dynamics were monitored for 240 days. The removal efficiencies of odor and methane were evaluated to compare the odor dilution ratios or methane concentrations at the biocover surface and landfill soil cover surface where the biocover was not installed. The odor removal efficiency was maintained above 85% in all seasons. The odor dilution ratios ranged from 300 to 3000 at the biocover surface, but they were 6694-20,801 at the landfill soil cover surface. Additionally, the methane removal efficiency was influenced by the ambient temperature; the methane removal efficiency in winter was 35-43%, while the methane removability was enhanced to 85%, 86%, and 96% in spring, early summer, and late summer, respectively. The ratio of methanotrophs to total bacterial community increased with increasing ambient temperature from 5.4% (in winter) to 12.8-14.8% (in summer). In winter, non-methanotrophs, such as Acinetobacter (8.8%), Rhodanobacter (7.5%), Pedobacter (7.5%), and Arthrobacter (5.7%), were abundant. However, in late summer, Methylobacter (8.8%), Methylocaldum (3.4%), Mycobacterium (1.1%), and Desulviicoccus (0.9%) were the dominant bacteria. Methylobacter was the dominant methanotroph in all seasons. These seasonal characteristics of the on-site biocover performance and its bacterial community are useful for designing a full-scale biocover for the simultaneous mitigation of odors and methane at landfills.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyekyeng Jung
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hee-Wook Ryu
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Kyung-Cheol Oh
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Jun-Min Jeon
- Green Environmental Complex Center, Suncheon 57992, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|