1
|
Shi K, Li JM, Wang MQ, Zhang YK, Zhang ZJ, Chen Q, Hollmann F, Xu JH, Yu HL. Computation-driven redesign of an NRPS-like carboxylic acid reductase improves activity and selectivity. SCIENCE ADVANCES 2024; 10:eadp6775. [PMID: 39612335 PMCID: PMC11606446 DOI: 10.1126/sciadv.adp6775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Engineering nonribosomal peptide synthetases (NRPSs) has been a "holy grail" in synthetic biology due to their modular nature and limited understanding of catalytic mechanisms. Here, we reported a computational redesign of the "gate-keeper" adenylation domain of the model NRPS-like enzyme carboxylic acid reductases (CARs) by using approximate mechanism-based geometric criteria and the Rosetta energy score. Notably, MabCAR3 mutants ACA-1 and ACA-4 displayed a remarkable improvement in catalytic efficiency (kcat/KM) for 6-aminocaproic acid, up to 101-fold. Furthermore, G418K exhibited an 86-fold enhancement in substrate specificity for adipic acid compared to 6-aminocaproic acid. Our work provides not only promising biocatalysts for nylon monomer biosynthesis but also a strategy for efficient NRPSs engineering.
Collapse
Affiliation(s)
- Kun Shi
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Mu-Qiang Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yi-Ke Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Frank Hollmann
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, Netherlands
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
2
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Ofori Atta L, Zhou Z, Roelfes G. In Vivo Biocatalytic Cascades Featuring an Artificial-Enzyme-Catalysed New-to-Nature Reaction. Angew Chem Int Ed Engl 2023; 62:e202214191. [PMID: 36342952 PMCID: PMC10100225 DOI: 10.1002/anie.202214191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Artificial enzymes utilizing the genetically encoded non-proteinogenic amino acid p-aminophenylalanine (pAF) as a catalytic residue are able to react with carbonyl compounds through an iminium ion mechanism to promote reactions that have no equivalent in nature. Herein, we report an in vivo biocatalytic cascade that is augmented with such an artificial enzyme-catalysed new-to-nature reaction. The artificial enzyme in this study is a pAF-containing evolved variant of the lactococcal multidrug-resistance regulator, designated LmrR_V15pAF_RMH, which efficiently converts benzaldehyde derivatives produced in vivo into the corresponding hydrazone products inside E. coli cells. These in vivo biocatalytic cascades comprising an artificial-enzyme-catalysed reaction are an important step towards achieving a hybrid metabolism.
Collapse
Affiliation(s)
- Linda Ofori Atta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Zhi Zhou
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands.,Current address: School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| |
Collapse
|
4
|
Weber D, de Souza Bastos L, Winkler M, Ni Y, Aliev AE, Hailes HC, Rother D. Multi-enzyme catalysed processes using purified and whole-cell biocatalysts towards a 1,3,4-substituted tetrahydroisoquinoline †‡. RSC Adv 2023; 13:10097-10109. [PMID: 37006360 PMCID: PMC10053099 DOI: 10.1039/d3ra01210g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, two multi-enzyme catalysed processes to access a 1,3,4-substituted tetrahydroisoquinoline (THIQ), using either purified enzymes or lyophilised whole-cell catalysts, are presented. A key focus was the first step in which the reduction of 3-hydroxybenzoic acid (3-OH-BZ) into 3-hydroxybenzaldehyde (3-OH-BA) was catalysed by a carboxylate reductase (CAR) enzyme. Incorporation of the CAR-catalysed step enables substituted benzoic acids as the aromatic components, which can potentially be obtained from renewable resources by microbial cell factories. In this reduction, the implementation of an efficient cofactor regeneration system of both ATP and NADPH was crucial. Two different recycling approaches, either using purified enzymes or lyophilised whole-cells, were established and compared. Both of them showed high conversions of the acid into 3-OH-BA (>80%). However, the whole-cell system showed superior performance because it allowed the combination of the first and second steps into a one-pot cascade with excellent HPLC yields (>99%, enantiomeric excess (ee) ≥ 95%) producing the intermediate 3-hydroxyphenylacetylcarbinol. Moreover, enhanced substrate loads could be achieved compared to the system employing only purified enzymes. The third and fourth steps were performed in a sequential mode to avoid cross-reactivities and the formation of several side products. Thus, (1R,2S)-metaraminol could be formed with high HPLC yields (>90%, isomeric content (ic) ≥ 95%) applying either purified or whole-cell transaminases from Bacillus megaterium (BmTA) or Chromobacterium violaceum (Cv2025). Finally, the cyclisation step was performed using either a purified or lyophilised whole-cell norcoclaurine synthase variant from Thalictrum flavum (ΔTfNCS-A79I), leading to the formation of the target THIQ product with high HPLC yields (>90%, ic > 90%). As many of the educts applied are from renewable resources and a complex product with three chiral centers can be gained by only four highly selective steps, a very step- and atom efficient approach to stereoisomerically pure THIQ is shown. In this work, two multi-enzyme catalysed processes to access a 1,3,4-substituted tetrahydroisoquinoline (THIQ), using either purified enzymes or lyophilised whole-cell catalysts, are presented.![]()
Collapse
Affiliation(s)
- Douglas Weber
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen UniversityWorringer Weg 152062 AachenGermany
| | - Lucas de Souza Bastos
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
| | - Margit Winkler
- acib GmbHKrenngasse 37A-8010 GrazAustria
- Institute of Molecular Biotechnology, Graz University of TechnologyPetersgasse 148010 GrazAustria
| | - Yeke Ni
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Abil E. Aliev
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Helen C. Hailes
- Department of Chemistry, University College LondonLondonWC1H 0AJUK
| | - Doerte Rother
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Juelich GmbH52425 JuelichGermany
- Aachen Biology and Biotechnology (ABBt), RWTH Aachen UniversityWorringer Weg 152062 AachenGermany
| |
Collapse
|
5
|
Daniel B, Hashem C, Leithold M, Sagmeister T, Tripp A, Stolterfoht-Stock H, Messenlehner J, Keegan R, Winkler CK, Ling JG, Younes SH, Oberdorfer G, Abu Bakar FD, Gruber K, Pavkov-Keller T, Winkler M. Structure of the Reductase Domain of a Fungal Carboxylic Acid Reductase and Its Substrate Scope in Thioester and Aldehyde Reduction. ACS Catal 2022; 12:15668-15674. [PMID: 37180375 PMCID: PMC10168641 DOI: 10.1021/acscatal.2c04426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Indexed: 12/12/2022]
Abstract
The synthesis of aldehydes from carboxylic acids has long been a challenge in chemistry. In contrast to the harsh chemically driven reduction, enzymes such as carboxylic acid reductases (CARs) are considered appealing biocatalysts for aldehyde production. Although structures of single- and didomains of microbial CARs have been reported, to date no full-length protein structure has been elucidated. In this study, we aimed to obtain structural and functional information regarding the reductase (R) domain of a CAR from the fungus Neurospora crassa (Nc). The NcCAR R-domain revealed activity for N-acetylcysteamine thioester (S-(2-acetamidoethyl) benzothioate), which mimics the phosphopantetheinylacyl-intermediate and can be anticipated as the minimal substrate for thioester reduction by CARs. The determined crystal structure of the NcCAR R-domain reveals a tunnel that putatively harbors the phosphopantetheinylacyl-intermediate, which is in good agreement with docking experiments performed with the minimal substrate. In vitro studies were performed with this highly purified R-domain and NADPH, demonstrating carbonyl reduction activity. The R-domain was able to accept not only a simple aromatic ketone but also benzaldehyde and octanal, which are typically considered to be the final product of carboxylic acid reduction by CAR. Also, the full-length NcCAR reduced aldehydes to primary alcohols. In conclusion, aldehyde overreduction can no longer be attributed exclusively to the host background.
Collapse
Affiliation(s)
- Bastian Daniel
- acib
- Austrian Center of Industrial Biotechnology, Krenngasse 37, 8010Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010Graz, Austria
- BioTechMed-Graz, 8010Graz, Austria
| | - Chiam Hashem
- acib
- Austrian Center of Industrial Biotechnology, Krenngasse 37, 8010Graz, Austria
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse 14, 8010Graz, Austria
| | - Marlene Leithold
- acib
- Austrian Center of Industrial Biotechnology, Krenngasse 37, 8010Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010Graz, Austria
| | - Theo Sagmeister
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010Graz, Austria
| | - Adrian Tripp
- Institute
for Biochemistry, Graz University of Technology, Petersgasse 12, 8010Graz, Austria
| | | | - Julia Messenlehner
- Institute
for Biochemistry, Graz University of Technology, Petersgasse 12, 8010Graz, Austria
| | - Ronan Keegan
- Rutherford
Appleton Laboratory, Research Complex at Harwell, UKRI-STFC, DidcotOX11 0FA, United Kingdom
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, Heinrichstraße 28, 8010Graz, Austria
| | - Jonathan Guyang Ling
- Department
of Biological Sciences and Biotechnology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Sabry H.H. Younes
- Department
of Chemistry, Faculty of Science, Sohag
University, Sohag82524, Egypt
- Department
of Biotechnology, TU Delft, Van der Maasweg 9, 2629HZDelft, The
Netherlands
| | - Gustav Oberdorfer
- Institute
for Biochemistry, Graz University of Technology, Petersgasse 12, 8010Graz, Austria
| | - Farah Diba Abu Bakar
- Department
of Biological Sciences and Biotechnology, Universiti Kebangsaan Malaysia, 43600Bangi, SelangorMalaysia
| | - Karl Gruber
- acib
- Austrian Center of Industrial Biotechnology, Krenngasse 37, 8010Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010Graz, Austria
- BioHealth
Field of Excellence, University of Graz, 8010Graz, Austria
- BioTechMed-Graz, 8010Graz, Austria
| | - Tea Pavkov-Keller
- acib
- Austrian Center of Industrial Biotechnology, Krenngasse 37, 8010Graz, Austria
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße 50, 8010Graz, Austria
- BioHealth
Field of Excellence, University of Graz, 8010Graz, Austria
- BioTechMed-Graz, 8010Graz, Austria
| | - Margit Winkler
- acib
- Austrian Center of Industrial Biotechnology, Krenngasse 37, 8010Graz, Austria
- Institute
of Molecular Biotechnology, Graz University
of Technology, Petersgasse 14, 8010Graz, Austria
| |
Collapse
|
6
|
Winkler M, Ling JG. Biocatalytic carboxylate reduction – recent advances and new enzymes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Margit Winkler
- Technische Universitat Graz Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz AUSTRIA
| | - Jonathan Guyang Ling
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Department of Biological Sciences and Biotechnology 43600 Bangi MALAYSIA
| |
Collapse
|
7
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
8
|
Stasyuk N, Gayda G, Kavetskyy T, Gonchar M. Nanozymes with reductase-like activities: antioxidant properties and electrochemical behavior. RSC Adv 2022; 12:2026-2035. [PMID: 35425252 PMCID: PMC8979041 DOI: 10.1039/d1ra08127f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 01/18/2023] Open
Abstract
Nanozymes (NZs) as stable cost-effective mimics of natural enzymes may be promising catalysts in food and environmental biotechnology, biosensors, alternative energy and medicine. The majority of known NZs are mimetics of oxidoreductases, although there are only limited data regarding mimetics of reductases. In the present research, a number of metal-based NZs were synthesized via chemical methods and screened for their antioxidant ability in solution. The most effective reductase-like Zn/Cd/Cu NZ was characterized in detail. Its antioxidant properties in comparison with several food products and Trolox, as well as substrate specificity, size and composition were studied. Zn/Cd/Cu NZ was shown to mimic preferentially selenite reductase. The amperometric sensor was constructed possessing a high sensitivity (1700 A M-1 m-2) and a broad linear range (16-1000 μM) for selenite ions. The possibility to apply the fabricated sensor for selenite determination in commercial mineral water has been demonstrated.
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine 79005 Lviv Ukraine
- Drohobych Ivan Franko State Pedagogical University 82100 Drohobych Ukraine
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine 79005 Lviv Ukraine
| | - Taras Kavetskyy
- Drohobych Ivan Franko State Pedagogical University 82100 Drohobych Ukraine
- The John Paul II Catholic University of Lublin 20-950 Lublin Poland
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine 79005 Lviv Ukraine
- Drohobych Ivan Franko State Pedagogical University 82100 Drohobych Ukraine
| |
Collapse
|
9
|
Maphatsoe MM, Hashem C, Ling JG, Horvat M, Rumbold K, Bakar FDA, Winkler M. Characterization and Immobilization of Pycnoporus cinnabarinus Carboxylic Acid Reductase, PcCAR2. J Biotechnol 2021; 345:47-54. [PMID: 34954290 DOI: 10.1016/j.jbiotec.2021.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
Carboxylic acid reductases (CARs) are well-known for their eminent selective one-step synthesis of carboxylic acids to aldehydes. To date, however, few CARs have been identified and characterized, especially from fungal sources. In this study, the CAR from the white rot fungus Pycnoporus cinnabarinus (PcCAR2) was expressed in Escherichia coli. PcCAR2's biochemical properties were explored in vitro after purification, revealing a melting temperature of 53°C, while the reaction temperature optimum was at 35°C. In the tested buffers, the enzyme showed a pH optimum of 6.0 and notably, a similar activity up to pH 7.5. PcCAR2 was immobilized to explore its potential as a recyclable biocatalyst. PcCAR2 showed no critical loss of activity after six cycles, with an average conversion to benzaldehyde of more than 85 percent per cycle. Immobilization yield and efficiency were 82% and 76%, respectively, on Ni-sepharose. Overall, our findings contribute to the characterization of a thermotolerant fungal CAR, and established a more sustainable use of the valuable biocatalyst.
Collapse
Affiliation(s)
- Masethabela Maria Maphatsoe
- Industrial Microbiology & Biotechnology Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, 2000 Johannesburg, South Africa
| | - Chiam Hashem
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Jonathan Guyang Ling
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Melissa Horvat
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Karl Rumbold
- Industrial Microbiology & Biotechnology Laboratory, School of Molecular and Cell Biology, University of the Witwatersrand, 2000 Johannesburg, South Africa
| | - Farah Diba Abu Bakar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria.
| |
Collapse
|
10
|
Biocatalytic Production of Aldehydes: Exploring the Potential of Lathyrus cicera Amine Oxidase. Biomolecules 2021; 11:biom11101540. [PMID: 34680172 PMCID: PMC8533949 DOI: 10.3390/biom11101540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 01/21/2023] Open
Abstract
Aldehydes are a class of carbonyl compounds widely used as intermediates in the pharmaceutical, cosmetic and food industries. To date, there are few fully enzymatic methods for synthesizing these highly reactive chemicals. In the present work, we explore the biocatalytic potential of an amino oxidase extracted from the etiolated shoots of Lathyrus cicera for the synthesis of value-added aldehydes, starting from the corresponding primary amines. In this frame, we have developed a completely chromatography-free purification protocol based on crossflow ultrafiltration, which makes the production of this enzyme easily scalable. Furthermore, we determined the kinetic parameters of the amine oxidase toward 20 differently substituted aliphatic and aromatic primary amines, and we developed a biocatalytic process for their conversion into the corresponding aldehydes. The reaction occurs in aqueous media at neutral pH in the presence of catalase, which removes the hydrogen peroxide produced during the reaction itself, contributing to the recycling of oxygen. A high conversion (>95%) was achieved within 3 h for all the tested compounds.
Collapse
|
11
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
12
|
Tavanti M, Hosford J, Lloyd RC, Brown MJB. Recent Developments and Challenges for the Industrial Implementation of Polyphosphate Kinases. ChemCatChem 2021. [DOI: 10.1002/cctc.202100688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Michele Tavanti
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
- Early Chemical development Pharmaceutical Sciences, R&D AstraZeneca Astrazeneca PLC 1 Francis Crick Avenue Cambridge Biomedical Campus Cambridge CB20AA UK
| | - Joseph Hosford
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Richard C. Lloyd
- Chemical Development Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| | - Murray J. B. Brown
- Synthetic Biochemistry Medicinal Science and Technology Pharma R&D GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG12NY UK
| |
Collapse
|
13
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
14
|
Shi J, Xu X, Liu PY, Hu YL, Zhang B, Jiao RH, Bashiri G, Tan RX, Ge HM. Discovery and biosynthesis of guanipiperazine from a NRPS-like pathway. Chem Sci 2021; 12:2925-2930. [PMID: 34164059 PMCID: PMC8179380 DOI: 10.1039/d0sc06135b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are modular enzymes that use a thiotemplate mechanism to assemble the peptide backbones of structurally diverse and biologically active natural products in bacteria and fungi. Unlike these canonical multi-modular NRPSs, single-module NRPS-like enzymes, which lack the key condensation (C) domain, are rare in bacteria, and have been largely unexplored to date. Here, we report the discovery of a gene cluster (gup) encoding a NRPS-like megasynthetase through genome mining. Heterologous expression of the gup cluster led to the production of two unprecedented alkaloids, guanipiperazines A and B. The NRPS-like enzyme activates two l-tyrosine molecules, reduces them to the corresponding amino aldehydes, and forms an unstable imine product. The subsequent enzymatic reduction affords piperazine, which can be morphed by a P450 monooxygenase into a highly strained compound through C–O bond formation. Further intermolecular oxidative coupling forming the C–C or C–O bond is catalyzed by another P450 enzyme. This work reveals the huge potential of NRPS-like biosynthetic gene clusters in the discovery of novel natural products. Genome mining of a NRPS-like gene cluster led to the identification of two novel alkaloids with antimicrobial activity. This work reveals the huge potential of NRPS-like biosynthetic gene clusters in the discovery of novel natural products.![]()
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University Nanjing 210023 China
| | - Xiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University Nanjing 210023 China
| | - Pei Yi Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University Nanjing 210023 China
| | - Yi Ling Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University Nanjing 210023 China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University Nanjing 210023 China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University Nanjing 210023 China
| | - Ghader Bashiri
- Laboratory of Structural Biology, Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland Auckland 1010 New Zealand
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University Nanjing 210023 China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University Nanjing 210023 China
| |
Collapse
|
15
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
16
|
Horvat M, Winkler M. In Vivo
Reduction of Medium‐ to Long‐Chain Fatty Acids by Carboxylic Acid Reductase (CAR) Enzymes: Limitations and Solutions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Melissa Horvat
- acib –Austrian Center of Industrial Biotechnology Krenngasse 37 8010 Graz Austria
| | - Margit Winkler
- acib –Austrian Center of Industrial Biotechnology Krenngasse 37 8010 Graz Austria
- Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
17
|
Kramer L, Le X, Rodriguez M, Wilson MA, Guo J, Niu W. Engineering Carboxylic Acid Reductase (CAR) through a Whole-Cell Growth-Coupled NADPH Recycling Strategy. ACS Synth Biol 2020; 9:1632-1637. [PMID: 32589835 DOI: 10.1021/acssynbio.0c00290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid evolution of enzyme activities is often hindered by the lack of efficient and affordable methods to identify beneficial mutants. We report the development of a new growth-coupled selection method for evolving NADPH-consuming enzymes based on the recycling of this redox cofactor. The method relies on a genetically modified Escherichia coli strain, which overaccumulates NADPH. This method was applied to the engineering of a carboxylic acid reductase (CAR) for improved catalytic activities on 2-methoxybenzoate and adipate. Mutant enzymes with up to 17-fold improvement in catalytic efficiency were identified from single-site saturated mutagenesis libraries. Obtained mutants were successfully applied to whole-cell conversions of adipate into 1,6-hexanediol, a C6 monomer commonly used in polymer industry.
Collapse
Affiliation(s)
- Levi Kramer
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Xuan Le
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Marisa Rodriguez
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Mark A. Wilson
- Department of Biochemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
18
|
Jaroensuk J, Intasian P, Wattanasuepsin W, Akeratchatapan N, Kesornpun C, Kittipanukul N, Chaiyen P. Enzymatic reactions and pathway engineering for the production of renewable hydrocarbons. J Biotechnol 2020; 309:1-19. [DOI: 10.1016/j.jbiotec.2019.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 01/23/2023]
|
19
|
Ling JG, Mansor MH, Abdul Murad AM, Mohd Khalid R, Quay DHX, Winkler M, Abu Bakar FD. A functionally-distinct carboxylic acid reductase PcCAR4 unearthed from a repertoire of type IV CARs in the white-rot fungus Pycnoporus cinnabarinus. J Biotechnol 2020; 307:55-62. [PMID: 31545972 DOI: 10.1016/j.jbiotec.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022]
Abstract
Carboxylic acid reductases (CARs) are attracting burgeoning attention as biocatalysts for organic synthesis of aldehydes and their follow-up products from economic carboxylic acid precursors. The CAR enzyme class as a whole, however, is still poorly understood. To date, relatively few CAR sequences have been reported, especially from fungal sources. Here, we sought to increase the diversity of the CAR enzyme class. Six new CAR sequences from the white-rot fungus Pycnoporus cinnabarinus were identified from genome-wide mining. Genome and gene clustering analysis suggests that these PcCAR enzymes play different natural roles in Basidiomycete systems, compared to their type II Ascomycete counterparts. The cDNA sequences of all six Pccar genes were deduced and analysis of their corresponding amino acid sequence showed that they encode for proteins of similar properties that possess a conserved modular functional tri-domain arrangement. Phylogenetic analyses showed that all PcCAR enzymes cluster together with the other type IV CARs. One candidate, PcCAR4, was cloned and over-expressed recombinantly in Escherichia coli. Subsequent biotransformation-based screening with a panel of structurally-diverse carboxylic acid substrates suggest that PcCAR4 possessed a more pronounced substrate specificity compared to previously reported CARs, preferring to reduce sterically-rigid carboxylic acids such as benzoic acid. These findings thus present a new functionally-distinct member of the CAR enzyme class.
Collapse
Affiliation(s)
- Jonathan Guyang Ling
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhamad Hawari Mansor
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Rozida Mohd Khalid
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Doris Huai Xia Quay
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
20
|
Carboxylic acid reductases in metabolic engineering. J Biotechnol 2020; 307:1-14. [DOI: 10.1016/j.jbiotec.2019.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/29/2023]
|
21
|
Thomas A, Cutlan R, Finnigan W, van der Giezen M, Harmer N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun Biol 2019; 2:429. [PMID: 31799431 PMCID: PMC6874671 DOI: 10.1038/s42003-019-0677-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022] Open
Abstract
Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) - a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.
Collapse
Affiliation(s)
- Adam Thomas
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Rhys Cutlan
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - William Finnigan
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| | - Mark van der Giezen
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
- Centre for Organelle Research, University of Stavanger, Richard Johnsens gate 4, Stavanger, 4021 Norway
| | - Nicholas Harmer
- Living Systems Institute, Stocker Road, Exeter, EX4 4QD UK
- Present Address: Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
22
|
Carboxylic acid reductase: Structure and mechanism. J Biotechnol 2019; 307:107-113. [PMID: 31689469 DOI: 10.1016/j.jbiotec.2019.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/22/2022]
Abstract
Carboxylic acid reductase (CAR) enzymes are large multi-domain proteins that catalyse the ATP- and NADPH-dependent reduction of wide range of acids to the corresponding aldehydes. This particular reaction is of considerable biotechnological interest. Recent advances in the structural and solution studies of isolated domain, di-domain and full-length CAR enzymes revealed valuable insights into the mechanism of carboxylic acid reduction activity. This review features the phylogenetic, sequence and structural insight into the CAR and implications of these observations in order to improve carboxylic acid reduction activity to develop CAR as robust biocatalyst.
Collapse
|
23
|
Co-factor demand and regeneration in the enzymatic one-step reduction of carboxylates to aldehydes in cell-free systems. J Biotechnol 2019; 307:202-207. [PMID: 31672531 DOI: 10.1016/j.jbiotec.2019.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 11/20/2022]
Abstract
Addressing the challenges associated with the development of in vitro biocatalytic carboxylate reductions for potential applications, important aspects of the co-factor regeneration systems and strategies for minimizing over-reduction were investigated. The ATP recycling can be performed with similarly high efficiency exploiting the polyphosphate source by combining Meiothermus ruber polyphosphate kinase and adenylate kinase or with Sinorhizobium meliloti polyphosphate kinase instead of the latter. Carboxylate reductions with the enzyme candidates used in this work allow operating at co-factor concentrations of adenosine 5'-triphosphate and β-nicotinamide adenine dinucleotide 2'-phosphate of 100 μM and, thereby, reducing the amounts of alcohols formed by side activities in the enzyme preparations. This study confirmed the expected benefits of carboxylic acid reductases in chemoselectively reducing the carboxylates to the corresponding aldehydes while leaving reductively-sensitive nitro, ester and cyano groups intact.
Collapse
|
24
|
Derrington SR, Turner NJ, France SP. Carboxylic acid reductases (CARs): An industrial perspective. J Biotechnol 2019; 304:78-88. [DOI: 10.1016/j.jbiotec.2019.08.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 01/09/2023]
|
25
|
Horvat M, Fiume G, Fritsche S, Winkler M. Discovery of carboxylic acid reductase (CAR) from Thermothelomyces thermophila and its evaluation for vanillin synthesis. J Biotechnol 2019; 304:44-51. [DOI: 10.1016/j.jbiotec.2019.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 11/26/2022]
|
26
|
Kramer L, Le X, Hankore ED, Wilson MA, Guo J, Niu W. Engineering and characterization of hybrid carboxylic acid reductases. J Biotechnol 2019; 304:52-56. [DOI: 10.1016/j.jbiotec.2019.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023]
|
27
|
Qu G, Liu B, Zhang K, Jiang Y, Guo J, Wang R, Miao Y, Zhai C, Sun Z. Computer-assisted engineering of the catalytic activity of a carboxylic acid reductase. J Biotechnol 2019; 306:97-104. [PMID: 31550488 DOI: 10.1016/j.jbiotec.2019.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Abstract
Carboxylic acid reductases (CARs) play crucial roles in the biosynthesis of optically pure aldehydes with no side products. It has inspired synthetic organic chemists and biotechnologists to exploit them as catalysts in practical applications. However, levels of activity and substrate specificity are not routinely sufficient. Recent developments in protein engineering have produced numerous biocatalysts with new catalytic properties, whereas such efforts in CARs are limited. In this study, we show that the exploitation of information derived from catalytic mechanism analysis and molecular dynamics simulations assisted the semi-rational engineering of a CAR from Segniliparus rugosus (SrCAR) with the aim of increasing activity. Guided by protein-ligand interaction fingerprinting analysis, 17 residues at the substrate binding pockets were first identified. We then performed single site saturation mutagenesis and successfully obtained variants that gave high activities using benzoic acid as the model substrate. As a result, the best mutant K524W enabled 99% conversion and 17.28 s-1 mM-1kcat/Km, with 7- and 2-fold improvement compared to the wild-type, respectively. The engineered catalyst K524W as well as a second variant K524Q proved to be effective in the reduction of other benzoic acid derivatives. Insight into the source of enhanced activity was gained by molecular dynamics simulations.
Collapse
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Beibei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Kun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Ran Wang
- Zhengzhou Tabacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang Wuhan, 430062, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
28
|
Fedorchuk TP, Khusnutdinova AN, Flick R, Yakunin AF. Site-directed mutagenesis and stability of the carboxylic acid reductase MAB4714 from Mycobacterium abscessus. J Biotechnol 2019; 303:72-79. [DOI: 10.1016/j.jbiotec.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
|
29
|
Horvat M, Fritsche S, Kourist R, Winkler M. Characterization of Type IV Carboxylate Reductases (CARs) for Whole Cell-Mediated Preparation of 3-Hydroxytyrosol. ChemCatChem 2019; 11:4171-4181. [PMID: 31681448 PMCID: PMC6813634 DOI: 10.1002/cctc.201900333] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Indexed: 11/18/2022]
Abstract
Fragrance and flavor industries could not imagine business without aldehydes. Processes for their commercial production raise environmental and ecological concerns. The chemical reduction of organic acids to aldehydes is challenging. To fulfill the demand of a mild and selective reduction of carboxylic acids to aldehydes, carboxylic acid reductases (CARs) are gaining importance. We identified two new subtype IV fungal CARs from Dichomitus squalens CAR (DsCAR) and Trametes versicolor CAR (Tv2CAR) in addition to literature known Trametes versicolor CAR (TvCAR). Expression levels were improved by the co-expression of GroEL-GroES with either the trigger factor or the DnaJ-DnaK-GrpE system. Investigation of the substrate scope of the three enzymes revealed overlapping substrate-specificities. Tv2CAR and DsCAR showed a preferred pH range of 7.0 to 8.0 in bicine buffer. TvCAR showed highest activity at pH 6.5 to 7.5 in MES buffer and slightly reduced activity at pH 6.0 or 8.0. TvCAR appeared to tolerate a wider pH range without significant loss of activity. Type IV fungal CARs optimal temperature was in the range of 25-35 °C. TvCAR showed a melting temperature (Tm) of 55 °C indicating higher stability compared to type III and the other type IV fungal CARs (Tm 51-52 °C). Finally, TvCAR was used as the key enzyme for the bioreduction of 3,4-dihydroxyphenylacetic acid to the antioxidant 3-hydroxytyrosol (3-HT) and gave 58 mM of 3-HT after 24 h, which correlates to a productivity of 0.37 g L-1 h-1.
Collapse
Affiliation(s)
- Melissa Horvat
- acib – Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Susanne Fritsche
- acib – Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Margit Winkler
- acib – Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
30
|
Tee KL, Xu JH, Wong TS. Protein engineering for bioreduction of carboxylic acids. J Biotechnol 2019; 303:53-64. [PMID: 31325477 DOI: 10.1016/j.jbiotec.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Carboxylic acids (CAs) are widespread in Nature. A prominent example is fatty acids, a major constituent of lipids. CAs are potentially economical precursors for bio-based products such as bio-aldehydes and bio-alcohols. However, carboxylate reduction is a challenging chemical transformation due to the thermodynamic stability of carboxylate. Carboxylic acid reductases (CARs), found in bacteria and fungi, offer a good solution to this challenge. These enzymes catalyse the NADPH- and ATP-dependent reduction of aliphatic and aromatic CAs. This review summarised all the protein engineering work that has been done on these versatile biocatalysts to date. The intricate catalytic mechanism and structure of CARs prompted us to first examine their domain architecture to facilitate the subsequent discussion of various protein engineering strategies. This then led to a survey of assays to detect aldehyde formation and to monitor aldenylation activity. Strategies for NADPH and ATP regeneration were also incorporated, as they are deemed vital to developing preparative-scale biocatalytic process and high-throughput screening systems. The objectives of the review are to consolidate CAR engineering research, stimulate interest, discussion or debate, and advance the field of bioreduction.
Collapse
Affiliation(s)
- Kang Lan Tee
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Jian-He Xu
- Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
31
|
Schwendenwein D, Ressmann AK, Doerr M, Höhne M, Bornscheuer UT, Mihovilovic MD, Rudroff F, Winkler M. Random Mutagenesis‐Driven Improvement of Carboxylate Reductase Activity using an Amino Benzamidoxime‐Mediated High‐Throughput Assay. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Anna K. Ressmann
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | - Mark Doerr
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme CatalysisGreifswald University Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Matthias Höhne
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme CatalysisGreifswald University Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Uwe T. Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme CatalysisGreifswald University Felix-Hausdorff-Str. 4 17487 Greifswald Germany
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | - Florian Rudroff
- Institute of Applied Synthetic ChemistryTU Wien Getreidemarkt 9/OC-163 1060 Vienna Austria
| | | |
Collapse
|
32
|
Strohmeier GA, Eiteljörg IC, Schwarz A, Winkler M. Enzymatic One-Step Reduction of Carboxylates to Aldehydes with Cell-Free Regeneration of ATP and NADPH. Chemistry 2019; 25:6119-6123. [PMID: 30866114 PMCID: PMC6563805 DOI: 10.1002/chem.201901147] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/12/2022]
Abstract
The direct generation of aldehydes from carboxylic acids is often a challenging synthetic task but undoubtedly attractive in view of abundant supply of such feedstocks from nature. Though long known, biocatalytic carboxylate reductions are at an early stage of development, presumably because of their co-factor requirement. To establish an alternative to whole-cell-based carboxylate reductions which are limited by side reactions, we developed an in vitro multi-enzyme system that allows for quantitative reductions of various carboxylic acids with full recycling of all cofactors and prevention of undesired over-reductions. Regeneration of adenosine 5'-triphosphate is achieved through the simultaneous action of polyphosphate kinases from Meiothermus ruber and Sinorhizobium meliloti and β-nicotinamide adenine dinucleotide 2'-phosphate is reduced by a glucose dehydrogenase. Under these conditions and in the presence of the carboxylate reductases from Neurospora crassa or Nocardia iowensis, various aromatic, heterocyclic and aliphatic carboxylic acids were quantitatively reduced to the respective aldehydes.
Collapse
Affiliation(s)
- Gernot A Strohmeier
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Inge C Eiteljörg
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Anna Schwarz
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria
| | - Margit Winkler
- acib-Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010, Graz, Austria.,Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
33
|
Qu G, Fu M, Zhao L, Liu B, Liu P, Fan W, Ma JA, Sun Z. Computational Insights into the Catalytic Mechanism of Bacterial Carboxylic Acid Reductase. J Chem Inf Model 2019; 59:832-841. [PMID: 30688451 DOI: 10.1021/acs.jcim.8b00763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Mingxing Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Beibei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenchao Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
34
|
Winkler M. Carboxylic acid reductase enzymes. N Biotechnol 2018. [DOI: 10.1016/j.nbt.2018.05.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Stolterfoht H, Steinkellner G, Schwendenwein D, Pavkov-Keller T, Gruber K, Winkler M. Identification of Key Residues for Enzymatic Carboxylate Reduction. Front Microbiol 2018; 9:250. [PMID: 29515539 PMCID: PMC5826065 DOI: 10.3389/fmicb.2018.00250] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
Carboxylate reductases (CARs, E.C. 1.2.1.30) generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro. Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of NcCAR variants when replaced by alanine. Finally, we showed that NcCAR wild-type and mutants efficiently reduce aliphatic acids.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Georg Steinkellner
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Structural Biology, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Tea Pavkov-Keller
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Structural Biology, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Karl Gruber
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Structural Biology, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
36
|
Carboxylic acid reductase enzymes (CARs). Curr Opin Chem Biol 2017; 43:23-29. [PMID: 29127833 DOI: 10.1016/j.cbpa.2017.10.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/02/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022]
Abstract
Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes.
Collapse
|
37
|
Khusnutdinova AN, Flick R, Popovic A, Brown G, Tchigvintsev A, Nocek B, Correia K, Joo JC, Mahadevan R, Yakunin AF. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids. Biotechnol J 2017; 12. [PMID: 28762640 DOI: 10.1002/biot.201600751] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/31/2017] [Indexed: 11/12/2022]
Abstract
Carboxylic acid reductases (CARs) selectively reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Although CARs attracts significant interest, only a few enzymes have been characterized to date, whereas the vast majority of CARs have yet to be examined. Herein the authors report that 12 bacterial CARs reduces a broad range of bifunctional carboxylic acids containing oxo-, hydroxy-, amino-, or second carboxyl groups with several enzymes showing activity toward 4-hydroxybutanoic (4-HB) and adipic acids. These CARs exhibits significant reductase activity against substrates whose second functional group is separated from the carboxylate by at least three carbons with both carboxylate groups being reduced in dicarboxylic acids. Purified CARs supplemented with cofactor regenerating systems (for ATP and NADPH), an inorganic pyrophosphatase, and an aldo-keto reductase catalyzes a high conversion (50-76%) of 4-HB to 1,4-butanediol (1,4-BDO) and adipic acid to 1,6-hexanediol (1,6-HDO). Likewise, Escherichia coli strains expressing eight different CARs efficiently reduces 4-HB to 1,4-BDO with 50-95% conversion, whereas adipic acid is reduced to a mixture of 6-hydroxyhexanoic acid (6-HHA) and 1,6-HDO. Thus, our results illustrate the broad biochemical diversity of bacterial CARs and their compatibility with other enzymes for applications in biocatalysis.
Collapse
Affiliation(s)
- Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Ana Popovic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Anatoli Tchigvintsev
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Kevin Correia
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Jeong C Joo
- Center for Bio-Based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, ON, M5S 3E5, Canada
| |
Collapse
|