1
|
Noro J, Cavaco-Paulo A, Silva C. Chemical modification of lipases: A powerful tool for activity improvement. Biotechnol J 2022; 17:e2100523. [PMID: 35544709 DOI: 10.1002/biot.202100523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The demand for adequate and ecologically acceptable procedures to produce the most differentiated products has been growing in recent decades, with enzymes being excellent examples of the advances achieved so far. Lipases are astonishing catalysts with a vast range of applications including the synthesis of esters, flavours, biodiesel, and polymers. The broad specificity of the substrates, as well as the regio-, stereo-, and enantioselectivity, are the differentiating factors of these enzymes. Structural modification is a current approach to enhance the activity of lipases. Chemical modification of lipases to improve catalytic performance is of great interest considering the increasingly broad fields of application. Together with the physical immobilization onto solid supports, different strategies have been developed to produce catalysts with higher activity and stability. In this review, practical insights into the different strategies developed in recent years regarding the modification of lipases are described. For the first time, the impact of the modifications on the activity and stability of lipases, as well as on the biotechnological applications, is fully compiled. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jennifer Noro
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Artur Cavaco-Paulo
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Silva
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Zhang Y, Ren W, Zhao Q, Lv K, Sun Y, Gao X, Wang F, Liu J. One-pot three-step enzymatic ROP in situ to form polycaprolactone from cyclohexanone: Optimizing and kinetic modeling. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Zhang Y, Sun Y, Tang H, Zhao Q, Ren W, Lv K, Yang F, Wang F, Liu J. One-Pot Enzymatic Synthesis of Enantiopure 1,3-Oxathiolanes Using Trichosporon laibachii Lipase and the Kinetic Model. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210,United States
| | - Yangjian Sun
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210,United States
| | - Hui Tang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qiuxiang Zhao
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Wenjie Ren
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Kuiying Lv
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fengke Yang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Fanye Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| | - Junhong Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Mail box 70, 53 Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
5
|
Zhang Y, Zhao Y, Gao X, Jiang W, Li Z, Yao Q, Yang F, Wang F, Liu J. Kinetic model of the enzymatic Michael addition for synthesis of mitomycin analogs catalyzed by immobilized lipase from T. laibacchii. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|