1
|
Jafernik K, Kubica P, Sharafan M, Kruk A, Malinowska MA, Granica S, Szopa A. Phenolic compound profiling and antioxidant potential of different types of Schisandra henryi in vitro cultures. Appl Microbiol Biotechnol 2024; 108:322. [PMID: 38713216 PMCID: PMC11076313 DOI: 10.1007/s00253-024-13159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: • Different types of S. henryi in vitro cultures were compared for the first time. • The S. henryi in vitro culture strong antioxidant potential was determined for the first time. • The polyphenol profiling of different types of S. henryi in vitro cultures was shown.
Collapse
Affiliation(s)
- Karolina Jafernik
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 Str, 30-688, Cracow, Poland
| | - Paweł Kubica
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 Str, 30-688, Cracow, Poland
| | - Marta Sharafan
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Str, 31-155, Cracow, Poland
| | - Aleksandra Kruk
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland
| | - Magdalena Anna Malinowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Str, 31-155, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmaceutical Biology, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 Str, 30-688, Cracow, Poland.
| |
Collapse
|
2
|
Skała E, Olszewska MA, Tabaka P, Kicel A. Light-Emitting Diodes and Liquid System Affect the Caffeoylquinic Acid Derivative and Flavonoid Production and Shoot Growth of Rhaponticum carthamoides (Willd.) Iljin. Molecules 2024; 29:2145. [PMID: 38731636 PMCID: PMC11085107 DOI: 10.3390/molecules29092145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Plant in vitro cultures can be an effective tool in obtaining desired specialized metabolites. The purpose of this study was to evaluate the effect of light-emitting diodes (LEDs) on phenolic compounds in Rhaponticum carthamoides shoots cultured in vitro. R. carthamoides is an endemic and medicinal plant at risk of extinction due to the massive harvesting of its roots and rhizomes from the natural environment. The shoots were cultured on an agar-solidified and liquid-agitated Murashige and Skoog's medium supplemented with 0.1 mg/L of indole-3-acetic acid (IAA) and 0.5 mg/L of 6-benzyladenine (BA). The effect of the medium and different treatments of LED lights (blue (BL), red (RL), white (WL), and a combination of red and blue (R:BL; 7:3)) on R. carthamoides shoot growth and its biosynthetic potential was observed. Medium type and the duration of LED light exposure did not affect the proliferation rate of shoots, but they altered the shoot morphology and specialized metabolite accumulation. The liquid medium and BL light were the most beneficial for the caffeoylquinic acid derivatives (CQAs) production, shoot growth, and biomass increment. The liquid medium and BL light enhanced the content of the sum of all identified CQAs (6 mg/g DW) about three-fold compared to WL light and control, fluorescent lamps. HPLC-UV analysis confirmed that chlorogenic acid (5-CQA) was the primary compound in shoot extracts regardless of the type of culture and the light conditions (1.19-3.25 mg/g DW), with the highest level under R:BL light. BL and RL lights were equally effective. The abundant component was also 3,5-di-O-caffeoylquinic acid, accompanied by 4,5-di-O-caffeoylquinic acid, a tentatively identified dicaffeoylquinic acid derivative, and a tricaffeoylquinic acid derivative 2, the contents of which depended on the LED light conditions.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.A.O.); (A.K.)
| | - Przemysław Tabaka
- Institute of Electrical Power Engineering, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Agnieszka Kicel
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.A.O.); (A.K.)
| |
Collapse
|
3
|
Jafernik K, Kubica P, Dziurka M, Kulinowski Ł, Korona-Głowniak I, Elansary HO, Waligórski P, Skalicka-Woźniak K, Szopa A. Comparative Assessment of Lignan Profiling and Biological Activities of Schisandra henryi Leaf and In Vitro PlantForm Bioreactor-Grown Culture Extracts. Pharmaceuticals (Basel) 2024; 17:442. [PMID: 38675405 PMCID: PMC11053505 DOI: 10.3390/ph17040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
This research's scope encompassed biotechnological, phytochemical, and biological studies of Schisandra henryi, including investigations into its in vitro microshoot culture grown in PlantForm bioreactors (temporary immersion systems, TISs), as well as extracts from leaves of the parent plant, focusing on anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. The phytochemical analysis included the isolation and quantification of 17 compounds from dibenzocyclooctadiene, aryltetralin lignans, and neolignans using centrifugal partition chromatography (CPC), HPLC-DAD, and UHPLC-MS/MS tandem mass spectrometry with triple quadrupole mass filter methods. Higher contents of compounds were found in microshoots extracts (max. 543.99 mg/100 g DW). The major compound was schisantherin B both in the extracts from microshoots and the leaves (390.16 and 361.24 mg/100 g DW, respectively). The results of the anti-inflammatory activity in terms of the inhibition of COX-1, COX-2, sPLA2, and LOX-15 enzymes indicated that PlantForm microshoot extracts showed strong activity against COX-1 and COX-2 (for 177 mg/mL the inhibition percentage was 76% and 66%, respectively). The antioxidant potential assessed using FRAP, CUPRAC, and DPPH assays showed that extracts from microshoot cultures had 5.6, 3.8, and 3.3 times higher power compared to extracts from the leaves of the parent plant, respectively. The total polyphenol content (TPC) was 4.1 times higher in extracts from the in vitro culture compared to the leaves. The antiproliferative activity against T-cell lymphoblast line Jurkat, breast adenocarcinoma cultures (MCF-7), colon adenocarcinoma (HT-29), and cervical adenocarcinoma (HeLa), showed that both extracts have considerable effects on the tested cell lines. The antimicrobial activity tested against strains of Gram-positive and Gram-negative bacteria and fungi showed the highest activity towards H. pylori (MIC and MBC 0.625 mg/mL).
Collapse
Affiliation(s)
- Karolina Jafernik
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 str., 30-688 Kraków, Poland; (K.J.); (P.K.)
| | - Paweł Kubica
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 str., 30-688 Kraków, Poland; (K.J.); (P.K.)
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21 str., 30-239 Kraków, Poland; (M.D.); (P.W.)
| | - Łukasz Kulinowski
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki 1 str., 20-093 Lublin, Poland; (Ł.K.); (K.S.-W.)
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 str., 20-093 Lublin, Poland;
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Piotr Waligórski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21 str., 30-239 Kraków, Poland; (M.D.); (P.W.)
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki 1 str., 20-093 Lublin, Poland; (Ł.K.); (K.S.-W.)
| | - Agnieszka Szopa
- Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9 str., 30-688 Kraków, Poland; (K.J.); (P.K.)
| |
Collapse
|
4
|
Gadhoumi H, Dhouafli Z, Yeddes W, serairi beji R, Miled K, Trifi M, Chirchi A, Saidani Tounsi M, Hayouni EA. Biochemical Composition, Antioxidant Capacity and Protective Effects of Three Fermented Plants Beverages on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Mice. Indian J Microbiol 2024; 64:229-243. [PMID: 38468731 PMCID: PMC10924858 DOI: 10.1007/s12088-023-01172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/30/2023] [Indexed: 03/13/2024] Open
Abstract
Functional beverages play an essential role in our modern life and contribute to nutritional well-being. Current efforts to understand and develop functional beverages to promote health and wellness have been enhanced. The present study aimed to investigate the production of three fermented plants beverages (FPBs) from aromatic and medicinal plants and to evaluate the fermented product in terms of physio-biochemical composition, the aromatic compounds, antioxidant activity, and in vivo protective effects on hepatotoxicity and nephrotoxicity induced by carbon tetrachloride (CCl4). The results showed that the fermented beverage NurtBio B had the highest levels of polyphenols, flavonoids, and tannins; 242.3 ± 12.4 µg GAE/mL, 106.4 ± 7.3 µg RE/mL and 94.2 ± 5.1 µg CE/mL, respectively. The aromatic profiles of the fermented beverages showed thirty-one interesting volatile compounds detected by GC-MS headspace analyses such as benzaldehyde, Eucalyptol, Fenchone, 3-Octadecyne, Estragole, and Benzene propanoic acid 1-methylethyl ester. In addition, the fermentation process was significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. In vivo administration of CCl4 in mice induced hepatotoxicity and nephrotoxicity by a significant rise in the levels of serum liver and kidney biomarkers. The protective effects of the FPBs showed that they significantly restored the majority of these biological parameters to normal levels, along with increase antioxidant enzyme activities, as well as an improvement of histopathological changes, suggesting their protective effects.
Collapse
Affiliation(s)
- Hamza Gadhoumi
- Faculty of Sciences of Tunis, University of Tunis El Manar, El Manar, Tunis 2092, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Zohra Dhouafli
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Walid Yeddes
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Raja serairi beji
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - Khaled Miled
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Mounir Trifi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Abdelhamid Chirchi
- Experimental Commodities and Animal Care Service, Institute of Pasteur, Tunis, Tunisia
| | - Moufida Saidani Tounsi
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| | - El Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP-901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
5
|
Jia M, Zhou L, Lou Y, Yang X, Zhao H, Ouyang X, Huang Y. An analysis of the nutritional effects of Schisandra chinensis components based on mass spectrometry technology. Front Nutr 2023; 10:1227027. [PMID: 37560060 PMCID: PMC10408133 DOI: 10.3389/fnut.2023.1227027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a Traditional Chinese medicinal herb that can be used both for medicinal purposes and as a food ingredient due to its beneficial properties, and it is enriched with a wide of natural plant nutrients, including flavonoids, phenolic acids, anthocyanins, lignans, triterpenes, organic acids, and sugars. At present, there is lack of comprehensive study or systemic characterization of nutritional and active ingredients of S. chinensis using innovative mass spectrometry techniques. METHODS The comprehensive review was conducted by searching the PubMed databases for relevant literature of various mass spectrometry techniques employed in the analysis of nutritional components in S. chinensis, as well as their main nutritional effects. The literature search covered the past 5 years until March 15, 2023. RESULTS The potential nutritional effects of S. chinensis are discussed, including its ability to enhance immunity, function as an antioxidant, anti-allergen, antidepressant, and anti-anxiety agent, as well as its ability to act as a sedative-hypnotic and improve memory, cognitive function, and metabolic imbalances. Meanwhile, the use of advanced mass spectrometry detection technologies have the potential to enable the discovery of new nutritional components of S. chinensis, and to verify the effects of different extraction methods on these components. The contents of anthocyanins, lignans, organic acids, and polysaccharides, the main nutritional components in S. chinensis, are also closely associated to its quality. CONCLUSION This review will provide guidelines for an in-depth study on the nutritional value of S. chinensis and for the development of healthy food products with effective components.
Collapse
Affiliation(s)
- Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Li Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanyuan Lou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| | - Hangyu Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, CT, United States
| | - Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Department of Pediatrics, The First Affiliated Hospital of Henan University of CM, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Different Types of Hypericum perforatum cvs. (Elixir, Helos, Topas) In Vitro Cultures: A Rich Source of Bioactive Metabolites and Biological Activities of Biomass Extracts. Molecules 2023; 28:molecules28052376. [PMID: 36903619 PMCID: PMC10005045 DOI: 10.3390/molecules28052376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Microshoot agitated and bioreactor cultures (PlantForm bioreactors) of three Hypericum perforatum cultivars (Elixir, Helos, Topas) were maintained in four variants of Murashige and Skoog medium (MS) supplemented with 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (in the range of 0.1-3.0 mg/L). In both types of in vitro cultures, the accumulation dynamics of phenolic acids, flavonoids, and catechins were investigated during 5- and 4-week growth cycles, respectively. The contents of metabolites in methanolic extracts from biomasses collected in 1-week intervals were estimated by HPLC. The highest total contents of phenolic acids, flavonoids, and catechins were 505, 2386, and 712 mg/100 g DW, respectively (agitated cultures of cv. Helos). The extracts from biomass grown under the best in vitro culture conditions were examined for antioxidant and antimicrobial activities. The extracts showed high or moderate antioxidant activity (DPPH, reducing power, and chelating activity assays), high activity against Gram-positive bacteria, and strong antifungal activity. Additionally, experiments with phenylalanine feeding (1 g/L) in agitated cultures were performed reaching the highest enhancement of the total contents of flavonoids, phenolic acids, and catechins on day 7 after the addition of the biogenetic precursor (2.33-, 1.73- and 1.33-fold, respectively). After feeding, the highest accumulation of polyphenols was detected in the agitated culture of cv. Elixir (4.48 g/100 g DW). The high contents of metabolites and the promising biological properties of the biomass extracts are interesting from a practical point of view.
Collapse
|
7
|
Yang K, Qiu J, Huang Z, Yu Z, Wang W, Hu H, You Y. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114759. [PMID: 34678416 DOI: 10.1016/j.jep.2021.114759] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (called bei-wuweizi in Chinese, S. chinensis) and Schisandra sphenanthera (called nan-wuweizi in Chinese, S. sphenanthera) are two highly similar plants in the Magnoliaceae family. Their dried ripe fruits are commonly used as traditional Chinese medicine in the treatment of coughs, palpitation, spermatorrhea, and insomnia. They also are traditionally used as tonics in Russia, Japan, and Korea. AIM OF THE REVIEW S. chinensis and S. sphenanthera are similar in appearance, traditional applications, ingredient compositions, and therapeutic effects. This review, therefore, aims to provide a systematic insight into the botanical background, ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicology of S. chinensis and S. sphenanthera, and to explore and present the similarities and differences between S. chinensis and S. sphenanthera. MATERIALS AND METHODS A comprehensive literature search regarding S. chinensis and S. sphenanthera was collected by using electronic databases including PubMed, SciFinder, Science Direct, Web of Science, CNKI, and the online ethnobotanical database. RESULTS In the 2020 Edition of Chinese Pharmacopoeia (ChP), there were 100 prescriptions containing S. chinensis, while only 11 contained S. sphenanthera. Totally, 306 and 238 compounds have been isolated and identified from S. chinensis and S. sphenanthera, respectively. Among these compounds, lignans, triterpenoids, essential oils, phenolic acid, flavonoids, phytosterols are the major composition. Through investigation of pharmacological activities, S. chinensis and S. sphenanthera have similar therapeutic effects including hepatoprotection, neuroprotection, cardioprotection, anticancer, antioxidation, anti-inflammation, and hypoglycemic effect. Besides, S. chinensis turns out to have more effects including reproductive regulation and immunomodulatory, antimicrobial, antitussive and antiasthmatic, anti-fatigue, antiarthritic, and bone remodeling effects. Both S. chinensis and S. sphenanthera have inhibitory effects on CYP3A and P-gp, which can mediate metabolism or efflux of substrates, and therefore interact with many drugs. CONCLUSIONS S. chinensis and S. sphenanthera have great similarities. Dibenzocyclooctadiene lignans are regarded to contribute to most of the bioactivities. Schisandrin A-C, schisandrol A-B, and schisantherin A, existing in both S. chinensis and S. sphenanthera but differing in the amount, are the main active components, which may contribute to the similarities and differences. Study corresponding to the traditional use is needed to reveal the deep connotation of the use of S. chinensis and S. sphenanthera as traditional Chinese medicine. In addition, a joint study of S. chinensis and S. sphenanthera can better show the difference between them, which can provide a reference for clinical application. It is worth mentioning that the inhibition of S. chinensis and S. sphenanthera on CYP3A and P-gp may lead to undesirable drug-drug interactions.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Jing Qiu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Wenjun Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Yu You
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
8
|
Gao Y, Tian R, Liu H, Xue H, Zhang R, Han S, Ji L, Huang W, Zhan J, You Y. Research progress on intervention effect and mechanism of protocatechuic acid on nonalcoholic fatty liver disease. Crit Rev Food Sci Nutr 2021; 62:9053-9075. [PMID: 34142875 DOI: 10.1080/10408398.2021.1939265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a surge burden worldwide due to its high prevalence, with complicated deterioration symptoms such as liver fibrosis and cancer. No effective drugs are available for NALFD so far. The rapid growth of clinical demand has prompted the treatment of NAFLD to become a research hotspot. Protocatechuic acid (PCA) is a natural secondary metabolite commonly found in fruits, vegetables, grains, and herbal medicine. It is also the major internal metabolites of anthocyanins and other polyphenols. In the present manuscript, food sources, metabolic absorption, and efficacy of PCA were summarized while analyzing its role in improving NAFLD, as well as the mechanism involved. The results indicated that PCA could ameliorate NAFLD by regulating glucose and lipid metabolism, oxidative stress and inflammation, gut microbiota and metabolites. It was proposed for the first time that PCA might reduce NAFLD by enhancing the energy consumption of brown adipose tissue (BAT). However, the PCA administration mode and dose for NAFLD remain inconclusive. Fresh insights into the specific molecular mechanisms are required, while clinical trials are essential in the future. This review provides new targets and reasoning for the clinical application of PCA in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Rongrong Tian
- Department of Biomedicine, Beijing City University, Beijing, China
| | - Haiyue Liu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Ruizhe Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Suping Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Liu HM, Xu PF, Cheng MY, Lei SN, Liu QL, Wang W. Optimization of Fermentation Process of Pomegranate Peel and Schisandra Chinensis and the Biological Activities of Fermentation Broth: Antioxidant Activity and Protective Effect Against H 2O 2-induced Oxidative Damage in HaCaT Cells. Molecules 2021; 26:molecules26113432. [PMID: 34198860 PMCID: PMC8201020 DOI: 10.3390/molecules26113432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, the lactobacillus fermentation process of pomegranate (Punica granatum L.) peel and Schisandra chinensis (Turcz.) Baill (PP&SC) was optimized by using the response surface method (RSM) coupled with a Box-Behnken design. The optimum fermentation condition with the maximal yield of ellagic acid (99.49 ± 0.47 mg/g) was as follows: 1:1 (w:w) ratio of pomegranate peel to Schisandra chinensis, 1% (v:v) of strains with a 1:1 (v:v) ratio of Lactobacillus Plantarum to Streptococcus Thermophilus, a 37 °C fermentation temperature, 33 h of fermentation time, 1:20 (g:mL) of a solid–liquid ratio and 3 g/100 mL of a glucose dosage. Under these conditions, the achieved fermentation broth (FB) showed stronger free radical scavenging abilities than the water extract (WE) against the ABTS+, DPPH, OH− and O2− radicals. The cytotoxicity and the protective effect of FB on the intracellular ROS level in HaCaT cells were further detected by the Cell Counting Kit-8 (CCK-8) assay. The results showed that FB had no significant cytotoxicity toward HaCaT cells when its content was no more than 8 mg/mL. The FB with a concentration of 8 mg/mL had a good protective effect against oxidative damage, which can effectively reduce the ROS level to 125.94% ± 13.46% (p < 0.001) compared with 294.49% ± 11.54% of the control group in H2O2-damaged HaCaT cells. The outstanding antioxidant ability and protective effect against H2O2-induced oxidative damage in HaCaT cells promote the potential for the FB of PP&SC as a functional raw material of cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Peng-Fei Xu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
| | - Sheng-Nan Lei
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
| | - Qing-Lei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China; (H.-M.L.); (P.-F.X.); (M.-Y.C.); (S.-N.L.); (Q.-L.L.)
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
10
|
Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed Pharmacother 2021; 133:110985. [DOI: 10.1016/j.biopha.2020.110985] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
|
11
|
The Influence of Nasturtium officinale R. Br. Agar and Agitated Microshoot Culture Media on Glucosinolate and Phenolic Acid Production, and Antioxidant Activity. Biomolecules 2020; 10:biom10091216. [PMID: 32825613 PMCID: PMC7565577 DOI: 10.3390/biom10091216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
This paper presents an optimization of conditions for microshoot cultures of Nasturtium officinale R. Br. (watercress). Variants of the Murashige and Skoog (MS) medium containing different plant growth regulators (PGRs): cytokinins—BA (6-benzyladenine), 2iP (6-γ,γ-dimethylallylaminopurine), KIN (kinetin), Zea (zeatin), and auxins—IAA (3-indoleacetic acid), IBA (indole-3-butyric acid), 2,4-d (2,4-dichlorophenoxyacetic acid), IPA (indole-3-pyruvic acid), NAA (naphthalene-1-acetic acid), total 27 MS variants, were tested in agar and agitated cultures. Growth cycles were tested for 10, 20, or 30 days in the agar cultures, and 10 or 20 days in the agitated cultures. Glucosinolate and phenolic acid production, total phenolic content and antioxidant potential were evaluated. The total amounts of glucosinolates ranged from 100.23 to 194.77 mg/100 g dry weight of biomass (DW) in agar cultures, and from 78.09 to 182.80 mg/100 g DW in agitated cultures. The total phenolic acid content varied from 15.89 to 237.52 mg/100 g DW for the agar cultures, and from 70.80 to 236.74 mg/100 g DW for the agitated cultures. Extracts of the cultured biomass contained higher total amounts of phenolic acids, lower total amounts of glucosinolates, a higher total phenolic content and similar antioxidant potentials compared to plant material. The analyses performed confirmed for the first time the explicit influence on secondary metabolite production and on the antioxidant potential. The significance was statistically estimated in a complex manner.
Collapse
|
12
|
Schisandra rubriflora Plant Material and In Vitro Microshoot Cultures as Rich Sources of Natural Phenolic Antioxidants. Antioxidants (Basel) 2020; 9:antiox9060488. [PMID: 32512744 PMCID: PMC7346123 DOI: 10.3390/antiox9060488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/05/2023] Open
Abstract
Schisandra rubriflora is a dioecious, underestimated medicinal plant species known from traditional Chinese medicine. The present study was aimed at characterising the polyphenolic profile composition and the related antioxidant capacity of S. rubriflora fruit, stem and leaf and in vitro microshoot culture extracts. Separate analyses of material from female and male specimens were carried out. This study was specifically aimed at detailed characterisation of the contribution of phenolic compounds to overall antioxidant activity using ultra-high-performance liquid chromatography with a photodiode array detector coupled to electrospray ionization ion trap mass spectrometry (UHPLC-DAD-ESI-MS3) and a high-performance liquid chromatography-diode array detector (HPLC-DAD). Using UHPLC-DAD-ESI-MS3, twenty-seven phenolic compounds from among phenolic acids and flavonoids were identified. Concentrations of three phenolic acids (neochlorogenic, chlorogenic and cryptochlorogenic acids) and eight flavonoids (hyperoside, rutoside, isoquercitrin, guaijaverin, trifolin, quercetin, kaempferol, and isorhamnetin) were determined using HPLC-DAD using reference standards. The highest total phenolic content was confirmed for the stem and leaf extracts collected in spring. The contents of phenolic compounds of in vitro biomasses were comparable to that in the fruit extracts. The methanolic extracts from the studied plant materials were evaluated for their antioxidant properties using various in vitro assays, namely free radicals scavenging estimation using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), ferric-reducing antioxidant power (FRAP) and cupric-reducing antioxidant capacity (CUPRAC) as well as QUick, Easy, New, CHEap, and Reproducible CUPRAC (QUENCHER-CUPRAC) assays. A close relationship between the content of polyphenolic compounds in S. rubriflora and their antioxidant potential has been documented.
Collapse
|