1
|
Wang D, Wang S, Sun W, Chen T, Liang C, Yang P, Liu Q, Zhao C, Chen Y. Biofilm-based biocatalysis for β-cyclodextrin production by the surface-display of β-cyclodextrin glycosyltransferase in Bacillus subtilis. Sci Rep 2024; 14:29925. [PMID: 39622869 PMCID: PMC11612409 DOI: 10.1038/s41598-024-81490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
β-cyclodextrin (β-CD) is an important cyclic oligosaccharide, which is widely applicated in foods, environmental protection, and cosmetics, primarily prepared from enzymatic synthesis in traditional industry. However, several challenges persist, including cumbersome processes and difficulties in achieving continuous fermentation and catalysis. This research introduced a biofilm-based immobilized fermentation, integrating with enzyme catalysis system of surface display in Bacillus subtilis. The bslA gene was selected to construct the surface display system due to its ability to promote biofilm formation and serve as an anchorin. Compared to free cell catalysis, the biofilm-based immobilized catalysis expanded the temperature range to 40-70 and the pH range to 5-7.5. During the continuous catalysis process, by the 13th batch, the relative activity remained around 52%, and the conversion rate exceeded 36%, similar to the single-batch free cell catalysis. These findings provide valuable insights and effective strategies for the industrial production of β-CD and other biochemicals through continuous catalysis.
Collapse
Affiliation(s)
- Dan Wang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Sinan Wang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| | - Caice Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pengpeng Yang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qingguo Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Nanjing Hi-Tech Biological Technology Research Institute Co. Ltd, Nanjing, China
| | | | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Miao B, Huang D, Wang T, Liu H, Hao Z, Yuan H, Jiang Y. Enhancing trehalose production via Bacillus species G1 cyclodextrin glucanotransferase mutants: modifying disproportionation characteristics and thermal stability. Front Microbiol 2024; 15:1500232. [PMID: 39629214 PMCID: PMC11611815 DOI: 10.3389/fmicb.2024.1500232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Inefficient conversion of small molecule maltooligosaccharides into trehalose greatly affects the cost of the production of trehalose by double enzyme method [maltooligosyl trehalose synthase (MTSase) and maltooligosyl trehalose trehalohyrolase (MTHase)]. This study used directed evolution to increase oligosaccharide utilization by the cyclomaltodextrin glucanotransferase (CGTase) from Bacillus species G1. This enzyme was chosen for its adaptability and stability in trehalose production. Model analysis revealed that the hydrogen bond distance between the N33K mutant and maltose reduced from 2.6 Å to 2.3 Å, increasing maltose affinity and boosting transglycosylation activity by 2.1-fold compared to the wild type. Further mutations improved thermal stability and optimum temperature, resulting in the N33K/S211G mutant. Consistent results from repeated experiments showed that the N33K/S211G mutant increased trehalose yield by 32.6% using maltodextrin. The results enhanced the double-enzyme method formed by MTSase and MTHase for trehalose production. Overall, we have identified optimal catalytic conditions, demonstrating significant potential for industrial-scale trehalose production with enhanced efficiency and cost-effectiveness.
Collapse
Affiliation(s)
- Bobo Miao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Zhifeng Hao
- Yantai Zhaoyi Biotechnology Co., Ltd, Yantai, China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, College of Bioengineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
3
|
Zhao G, Wang J, Tian Y, Wang H, Huang X. Nitroreductase DnrA, Utilizing Strategies Secreted in Bacillus sp. Za and SCK6, Enhances the Detoxification of Acifluorfen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15633-15642. [PMID: 38950134 DOI: 10.1021/acs.jafc.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Juanjuan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou 550081, PR China
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
4
|
Zhang M, Zhen J, Teng J, Zhao X, Fu X, Song H, Zhang Y, Zheng H, Bai W. N-Terminal Sequences of Signal Peptides Assuming Critical Roles in Expression of Heterologous Proteins in Bacillus subtilis. Microorganisms 2024; 12:1275. [PMID: 39065044 PMCID: PMC11278945 DOI: 10.3390/microorganisms12071275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The N-terminal sequences of proteins and their corresponding encoding sequences may play crucial roles in the heterologous expression. In this study, the secretory expression of alkaline pectin lyase APL in B. subtilis was investigated to explore the effects of the N-terminal 5-7 amino acid sequences of different signal peptides on the protein expression and secretion. It was identified for the first time that the first five amino acid sequences of the N-terminal of the signal peptide (SP-LipA) from Bacillus subtilis lipase A play an important role in promoting the expression of APL. Furthermore, it was revealed that SP-LipA resulted in higher secretory expression compared to other signal peptides in this study primarily due to its encoding of N-terminal amino acids with relatively higher transcription levels and its efficient secretion capacity. Based on this foundation, the recombinant strain constructed in this work achieved a new record for the highest extracellular yields of APL in B. subtilis, reaching 12,295 U/mL, which was 1.9-times higher than that expressed in the recombinant Escherichia coli strain previously reported. The novel theories uncovered in this study are expected to play significant roles in enhancing the expression of foreign proteins both inside and outside of cells.
Collapse
Affiliation(s)
- Meijuan Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar 161006, China;
| | - Jie Zhen
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jia Teng
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300392, China;
| | - Xingya Zhao
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiaoping Fu
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hui Song
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yeni Zhang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin 300392, China;
| | - Hongchen Zheng
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wenqin Bai
- Industrial Enzymes National Engineering Research Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (J.Z.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
5
|
Rabadiya K, Pardhi D, Thaker K, Patoliya J, Rajput K, Joshi R. A review on recent upgradation and strategies to enhance cyclodextrin glucanotransferase properties for its applications. Int J Biol Macromol 2024; 259:129315. [PMID: 38211906 DOI: 10.1016/j.ijbiomac.2024.129315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Cyclodextrin glycosyltransferase (CGTase) is a significant extracellular enzyme with diverse functions. CGTase is widely used in production of cyclic α-(1,4)-linked oligosaccharides (cyclodextrins) from starch via transglycosylation reaction. Recent discoveries of novel CGTases from different microorganisms have expanded its applications but natural CGTase have lower yield, leading to heterologous expression for increased production to meet various needs. Moreover, significant advancements in directed evolution approach have been explored to alter the molecular structure of CGTase to enhance its performance. This review comprehensively summarizes the strategies employed in heterologous expression to boost CGTase production and secretion in various host. It also outlines molecular engineering approaches aimed to improving CGTase properties, including product and substrate specificity, catalytic efficiency, and thermal stability. Additionally, a considerable stability against changes in temperature and organic solvents can be obtained by immobilization.
Collapse
Affiliation(s)
- Khushbu Rabadiya
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Dimple Pardhi
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Khushali Thaker
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Jaimini Patoliya
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Kiransinh Rajput
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Rushikesh Joshi
- Department of Biochemistry & Forensic Science, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
6
|
Li Q, Huang Z, Zhong Z, Bian F, Zhang X. Integrated Genomics and Transcriptomics Provide Insights into Salt Stress Response in Bacillus subtilis ACP81 from Moso Bamboo Shoot ( Phyllostachys praecox) Processing Waste. Microorganisms 2024; 12:285. [PMID: 38399690 PMCID: PMC10893186 DOI: 10.3390/microorganisms12020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Salt stress is detrimental to the survival of microorganisms, and only a few bacterial species produce hydrolytic enzymes. In this study, we investigated the expression of salt stress-related genes in the salt-tolerant bacterial strain Bacillus subtilis ACP81, isolated from bamboo shoot processing waste, at the transcription level. The results indicate that the strain could grow in 20% NaCl, and the sub-lethal concentration was 6% NaCl. Less neutral protease and higher cellulase and β-amylase activities were observed for B. subtilis ACP81 under sub-lethal concentrations than under the control concentration (0% NaCl). Transcriptome analysis showed that the strain adapted to high-salt conditions by upregulating the expression of genes involved in cellular processes (membrane synthesis) and defense systems (flagellar assembly, compatible solute transport, glucose metabolism, and the phosphotransferase system). Interestingly, genes encoding cellulase and β-amylase-related (malL, celB, and celC) were significantly upregulated and were involved in starch and sucrose metabolic pathways, and the accumulated glucose was effective in mitigating salt stress. RT-qPCR was performed to confirm the sequencing data. This study emphasizes that, under salt stress conditions, ACP81 exhibits enhanced cellulase and β-amylase activities, providing an important germplasm resource for saline soil reclamation and enzyme development.
Collapse
Affiliation(s)
- Qiaoling Li
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (Q.L.); (Z.H.); (Z.Z.); (F.B.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Zhiyuan Huang
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (Q.L.); (Z.H.); (Z.Z.); (F.B.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (Q.L.); (Z.H.); (Z.Z.); (F.B.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (Q.L.); (Z.H.); (Z.Z.); (F.B.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (Q.L.); (Z.H.); (Z.Z.); (F.B.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
- Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
7
|
Zhou J, Shi Y, Fang J, Gan T, Lu Y, Zhu L, Chen X. Efficient production of α-monoglucosyl hesperidin by cyclodextrin glucanotransferase from Bacillus subtilis. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12628-8. [PMID: 37335363 DOI: 10.1007/s00253-023-12628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
α-Monoglucosyl hesperidin is a promising food additive with various activities. However, there are a few reports about the production of α-monoglucosyl hesperidin. Here, to develop a practical and safe process for α-monoglucosyl hesperidin synthesis, we used nonpathogenic Bacillus subtilis as a host to express cyclodextrin glucanotransferase (CGTase) from Bacillus sp. A2-5a. The promoters and signal peptides were screened to optimize the transcription and secretion of CGTase in B. subtilis. The results of optimization showed that the best signal peptide and promoter were YdjM and PaprE, respectively. Finally, the enzyme activity increased to 46.5 U mL-1, 8.7 times that of the enzyme expressed from the strain containing pPHpaII-LipA, and the highest yield of α-monoglucosyl hesperidin was 2.70 g L-1 by enzymatic synthesis using the supernatant of the recombinant B. subtilis WB800 harboring the plasmid pPaprE-YdjM. This is the highest α-monoglucosyl hesperidin production level using recombinant CGTase to date. This work provides a generally applicable method for the scaled-up production of α-monoglucosyl hesperidin. KEY POINTS: • A three-step procedure was created for high throughput signal peptide screening. • YdjM and PaprE were screened from 173 signal peptides and 13 promoters. • α-Monoglucosyl hesperidin was synthesized by CGTase with a yield of 2.70 g L-1.
Collapse
Affiliation(s)
- Jiawei Zhou
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuan Shi
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingyi Fang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
8
|
Song W, Zhang M, Li X, Zhang Y, Zheng J. Heterologous expression of cyclodextrin glycosyltransferase from Bacillus stearothermophilus in Bacillus subtilis and its application in glycosyl rutin production. 3 Biotech 2023; 13:84. [PMID: 36798855 PMCID: PMC9925633 DOI: 10.1007/s13205-023-03510-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
In this paper, the cgt gene encoding cyclodextrin glycosyltransferase (CGTase) from Bacillus stearothermophilus was cloned into pWB980 plasmid for extracellular expression in Bacillus subtilis SCK6. Through adding a six-histidine affinity tag fused to the C-terminus, the recombinant CGTase could be purified by nickel ion affinity chromatography, and its molecular weight was approximately 76 kDa on SDS-PAGE. Then, the enzymatic properties were determined, and results were as follows: the optimum temperature and pH were identified as 40 ℃ and pH 5.0, respectively. CGTase had good tolerance to metal ions of Mn2+, Ca2+, and Mg2+. The enzyme activity was activated by Na+, Al3+, Fe3+, and Ni+, and it was remarkably inhibited by Cu2+ and Zn2+. To improve the aqueous solubility of rutin, CGTase was used to catalyze the transglycosylation reaction, and the conversion rate could reach as high as 80.13% under optimal conditions. Furthermore, the reaction mixture was treated with glucoamylase and microporous adsorbent resin. The yield of glycosyl-rutin was 56.1%, and its purity was 74.3%, which further improved the value of the product. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03510-5.
Collapse
Affiliation(s)
- Wen Song
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Mengjie Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Xiaojun Li
- Department of Fundamental Medicine, Xinyu University, Xinyu, 338004 China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
9
|
Kolasinliler G, Aagre MM, Akkale C, Kaya HB. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
10
|
Jiang Z, Xie X, Li Z, Ban X, Gu Z, Tang X, Hong Y, Cheng L, Li C. Regulation of Cell Membrane Permeability Enhanced the Non-Classical Secretion of γ-Cyclodextrin Glycosyltransferase in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16307-16315. [PMID: 36524966 DOI: 10.1021/acs.jafc.2c08320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
γ-Cyclodextrin glycosyltransferase (γ-CGTase, EC 2.4.1.19) is an essential enzyme required in the production of γ-cyclodextrin, which shows huge prospects in the food, medicine, materials, and chemical industries. In this study, γ-CGTase from Bacillus sp. G-825-6 STB17 was successfully cloned and expressed in Bacillus subtilis WB600. The final extracellular activity of γ-CGTase can reach 45.34 U/mL with the deletion of the signal peptide, which was about 11.3 times of the initial level of γ-CGTase secreted by the general pathway. By monitoring the whole cultivation process, secretion was divided into two stages, which were dominated by cell membrane changes and apoptosis. The measurement of lactate dehydrogenase and the results of fluorescence microscopy demonstrated that the cell membrane permeability changed significantly in the middle stage of fermentation, proving that it played a crucial role in the non-classical secretion of γ-CGTase. Furthermore, the addition of Triton X-100, a non-ionic surfactant, remarkably enhanced the secretion level of γ-CGTase by 21.5%, which was caused by the increase in cell membrane permeability. This work is the first to obtain the extracellular expression of CGTase via the non-classical secretion pathway in B. subtilis and provides a new strategy to enhance extracellular expression by regulating the cell membranes.
Collapse
Affiliation(s)
- Zihang Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaofang Xie
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Zhaofeng Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaofeng Ban
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaoshu Tang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synergetic and Biological Colloids, Ministry of Education, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
11
|
Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Jiang Z, Zhang L, Zhou W, Li H, Li Y, Qin W, Wang F, Wei D, Gao B. The Rational Modification of the Secretion Pathway: The Bidirectional Grinding Strategy on Signal Peptide and SecA in Bacillus subtilis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Jiang C, Ye C, Liu Y, Huang K, Jiang X, Zou D, Li L, Han W, Wei X. Genetic engineering for enhanced production of a novel alkaline protease BSP-1 in Bacillus amyloliquefaciens. Front Bioeng Biotechnol 2022; 10:977215. [PMID: 36110310 PMCID: PMC9468883 DOI: 10.3389/fbioe.2022.977215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alkaline protease has been widely applied in food, medicine, environmental protection and other industrial fields. However, the current activity and yield of alkaline protease cannot meet the demand. Therefore, it is important to identify new alkaline proteases with high activity. In this study, we cloned a potential alkaline protease gene bsp-1 from a Bacillus subtilis strain isolated in our laboratory. BSP-1 shows the highest sequence similarity to subtilisin NAT (S51909) from B. subtilis natto. Then, we expressed BSP-1 in Bacillus amyloliquefaciens BAX-9 and analyzed the protein expression level under a collection of promoters. The results show that the P43 promoter resulted in the highest transcription level, protein level and enzyme activity. Finally, we obtained a maximum activity of 524.12 U/mL using the P43 promoter after fermentation medium optimization. In conclusion, this study identified an alkaline protease gene bsp-1 from B. subtilis and provided a new method for high-efficiency alkaline protease expression in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Yongfeng Liu
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Kuo Huang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xuedeng Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xuetuan Wei,
| |
Collapse
|
14
|
Optimal Secretory Expression of Acetaldehyde Dehydrogenase from Issatchenkia terricola in Bacillus subtilis through a Combined Strategy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030747. [PMID: 35164011 PMCID: PMC8838704 DOI: 10.3390/molecules27030747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/20/2023]
Abstract
Acetaldehyde dehydrogenases are potential enzyme preparations that can be used to detoxify acetaldehyde and other exogenous aldehydes from pharmaceuticals, food, and biofuel production. In this study, we enhanced the expression of acetaldehyde dehydrogenase sourced from Issatchenkia terricola (istALDH) in Bacillus subtilis using a combinatorial strategy for the optimization of signal peptides, promoters, and growth conditions. First, a library of various signal peptides was constructed to identify the optimal signal peptides for efficient istALDH secretion. The signal peptide yqzG achieved the highest extracellular istALDH activity (204.85 ± 3.31 U/mL). Second, the aprE promoter was replaced by a constitutive promoter (i.e., P43) and an inducible promoter (i.e., Pglv), resulting in 12.40% and 19.97% enhanced istALDH, respectively. Furthermore, the tandem promoter P43-Pglv provided a better performance, resulting in 30.96% enhanced istALDH activity. Third, the production of istALDH was optimized by testing one factor at a time. Physical parameters were optimized including the inducer (e.g., maltose) concentrations, incubation temperatures, and inoculation amounts, and the results were 2.0%, 35 °C, and 2.0%, respectively. The optimized medium results were 2.0% glucose, 1.5% peptone, 2.5% yeast extract, 1% NaCl, and 0.5% (NH4)2SO4. The extracellular istALDH activity was 331.19 ± 4.19 U/mL, yielding the highest production reported in the literature to date.
Collapse
|
15
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|