1
|
Huang Y, Chen M, Hu G, Wu B, He M. Elimination of editing plasmid mediated by theophylline riboswitch in Zymomonas mobilis. Appl Microbiol Biotechnol 2023; 107:7151-7163. [PMID: 37728624 DOI: 10.1007/s00253-023-12783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Zymomonas mobilis is regarded as a potential chassis for the production of platform chemicals. Genome editing using the CRISPR-Cas system could meet the need for gene modification in metabolic engineering. However, the low curing efficiency of CRISPR editing plasmid is a common bottleneck in Z. mobilis. In this study, we utilized a theophylline-dependent riboswitch to regulate the expression of the replicase gene of the editing plasmid, thereby promoting the elimination of exogeneous plasmid. The riboswitch D (RSD) with rigorous regulatory ability was identified as the optimal candidate by comparing the transformation efficiency of four theophylline riboswitch-based backbone editing plasmids, and the optimal theophylline concentration for inducing RSD was determined to be 2 mM. A highly effective method for eliminating the editing plasmid, cells with RSD-based editing plasmid which were cultured in liquid and solid RM media in alternating passages at 37 °C without shaking, was established by testing the curing efficiency of backbone editing plasmids pMini and pMini-RSD in RM medium with or without theophylline at 30 °C or 37 °C. Finally, the RSD-based editing plasmid was applied to genome editing, resulting in an increase of more than 10% in plasmid elimination efficiency compared to that of pMini-based editing plasmid. KEY POINTS: • An effective strategy for curing CRISPR editing plasmid has been established in Z. mobilis. • Elimination efficiency of the CRISPR editing plasmid was enhanced by 10% to 20% under the regulation of theophylline-dependent riboswitch RSD.
Collapse
Affiliation(s)
- Yuhuan Huang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Mao Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China.
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Section 4-13, Renmin Rd. South, Chengdu, 610041, China.
| |
Collapse
|
2
|
Co-expression of an isopropanol synthetic operon and eGFP to monitor the robustness of Cupriavidus necator during isopropanol production. Enzyme Microb Technol 2022; 161:110114. [DOI: 10.1016/j.enzmictec.2022.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
|