1
|
Hwang JH, Choi TR, Kim S, Lee Y, Shin Y, Choi S, Oh J, Kim SH, Park JH, Bhatia SK, Yang YH. Evaluation of simplified ester-linked fatty acid analysis (ELFA) for phospholipid fatty acid (PLFA) analysis of bacterial population. Anal Biochem 2024; 695:115638. [PMID: 39127328 DOI: 10.1016/j.ab.2024.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Phospholipid fatty acid (PLFA) analysis is used for characterizing microbial communities based on their lipid profiles. This method avoids biases from PCR or culture, allowing data collection in a natural state. However, PLFA is labor-intensive due to lipid fractionation. Simplified ester-linked fatty acid analysis (ELFA), which skips lipid fractionation, offers an alternative. It utilizes base-catalyzed methylation to derivatize only lipids, not free fatty acids, and found glycolipid and neutral lipid fractions are scarcely present in most bacteria, allowing lipid fractionation to be skipped. ELFA method showed a high correlation to PLFA data (r = 0.99) and higher sensitivity than the PLFA method by 1.5-2.57-fold, mainly due to the higher recovery of lipids, which was 1.5-1.9 times higher than with PLFA. The theoretical limit of detection (LOD) and limit of quantification (LOQ) for the ELFA method indicated that 1.54-fold less sample was needed for analysis than with the PLFA method. Our analysis of three bacterial cultures and a simulated consortium revealed the effectiveness of the ELFA method by its simple procedure and enhanced sensitivity for detecting strain-specific markers, which were not detected in PLFA analysis. Overall, this method could be easily used for the population analysis of synthetic consortia.
Collapse
Affiliation(s)
- Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Sang-Hyoun Kim
- Department of Civil and Environmental Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si, 63243, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Kim HJ, Kim S, Lee Y, Shin Y, Choi S, Oh J, Jeong J, Park H, Ahn J, Joo JC, Choi KY, Bhatia SK, Yang YH. Production of bio-indigo from engineered Pseudomonas putida KT2440 harboring tryptophanase and flavin-containing monooxygenase. Enzyme Microb Technol 2024; 182:110529. [PMID: 39447513 DOI: 10.1016/j.enzmictec.2024.110529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Indigo is a unique blue dye that has been used in the textile industry for centuries and is currently mass-produced commercially through chemical synthesis. However, the use of toxic substrates and reducing agents for chemical synthesis is associated with environmental concerns, necessitating the development of eco-friendly alternatives based on microbial production. In this study, a robust industrial strategy for indigo production was developed using Pseudomonas putida KT2440 as the host strain, which is characterized by its excellent ability to degrade aromatic compounds and high resistance to environmental stress. By introducing the genes tryptophanase (tnaA) and Flavin-containing monooxygenase (FMO), a P. putida HI201 strain was constructed to produce indigo from tryptophan. To enhance the indigo yield, culture conditions, including medium composition, temperature, tryptophan concentration, and shaking speed, were optimized. Under optimal conditions such as TB medium, 15 mM tryptophan, 30°C, 200 rpm, P. putida HI201 biosynthesized 1.31 g/L indigo from tryptophan in a fed-batch fermentation system. The introduction of tnaA and FMO genes also enabled the production of indigo in various P. putida species, and the indigo-producing strain had a blue color, which served as a visual indicator. This study presents a strategy for using P. putida as a host for robust and sustainable microbial production of indigo, highlighting the strain's applicability and efficiency in environment friendly dye synthesis.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jaeho Jeong
- Applied biological Engineering, University of Science and Technology, 217. Gajeong-ro, Uuseong-gu, Daejeon 32113, Republic of Korea; Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechology (KRIBB), Cheongju 28116, Republic of Korea
| | - HyunA Park
- Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechology (KRIBB), Cheongju 28116, Republic of Korea
| | - Jungoh Ahn
- Applied biological Engineering, University of Science and Technology, 217. Gajeong-ro, Uuseong-gu, Daejeon 32113, Republic of Korea; Biotechnology Process Engineering Center, Korea Research Institute of Bioscience and Biotechology (KRIBB), Cheongju 28116, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Kwon-Young Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Gyeonggi-do, Republic of Korea; Advanced College of Bio-Convergence Engineering, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Fan C, Xie Z, Zheng D, Zhang R, Li Y, Shi J, Cheng M, Wang Y, Zhou Y, Zhan Y, Yan Y. Overview of indigo biosynthesis by Flavin-containing Monooxygenases: History, industrialization challenges, and strategies. Biotechnol Adv 2024; 73:108374. [PMID: 38729229 DOI: 10.1016/j.biotechadv.2024.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Indigo is a natural dye extensively used in the global textile industry. However, the conventional synthesis of indigo using toxic compounds like aniline, formaldehyde, and hydrogen cyanide has led to environmental pollution and health risks for workers. This method also faces growing economic, sustainability, and environmental challenges. To address these issues, the concept of bio-indigo or indigo biosynthesis has been proposed as an alternative to aniline-based indigo synthesis. Among various enzymes, Flavin-containing Monooxygenases (FMOs) have shown promise in achieving a high yield of bio-indigo. However, the industrialization of indigo biosynthesis still encounters several challenges. This review focuses on the historical development of indigo biosynthesis mediated by FMOs. It highlights several factors that have hindered industrialization, including the use of unsuitable chassis (Escherichia coli), the toxicity of indole, the high cost of the substrate L-tryptophan, the water-insolubility of the product indigo, the requirement of reducing reagents such as sodium dithionite, and the relatively low yield and high cost compared to chemical synthesis. Additionally, this paper summarizes various strategies to enhance the yield of indigo synthesized by FMOs, including redundant sequence deletion, semi-rational design, cheap precursor research, NADPH regeneration, large-scale fermentation, and enhancement of water solubility of indigo.
Collapse
Affiliation(s)
- Changxin Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ziqi Xie
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Da Zheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ruihan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yijin Li
- Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Jiacheng Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Mingyuan Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yifei Wang
- Innovation Base of Life Science and Technology, Qiming College, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yu Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Yi Zhan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| | - Yunjun Yan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
| |
Collapse
|
4
|
Kim HJ, Ham S, Shin N, Hwang JH, Oh SJ, Choi TR, Joo JC, Bhatia SK, Yang YH. Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters. J Microbiol Biotechnol 2024; 34:969-977. [PMID: 38213292 PMCID: PMC11091664 DOI: 10.4014/jmb.2308.08039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl β-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Chandel N, Singh BB, Dureja C, Yang YH, Bhatia SK. Indigo production goes green: a review on opportunities and challenges of fermentative production. World J Microbiol Biotechnol 2024; 40:62. [PMID: 38182914 DOI: 10.1007/s11274-023-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Indigo is a widely used dye in various industries, such as textile, cosmetics, and food. However, traditional methods of indigo extraction and processing are associated with environmental and economic challenges. Fermentative production of indigo using microbial strains has emerged as a promising alternative that offers sustainability and cost-effectiveness. This review article provides a critical overview of microbial diversity, metabolic pathways, fermentation strategies, and genetic engineering approaches for fermentative indigo production. The advantages and limitations of different indigo production systems and a critique of the current understanding of indigo biosynthesis are discussed. Finally, the potential application of indigo in other sectors is also discussed. Overall, fermentative production of indigo offers a sustainable and bio-based alternative to synthetic methods and has the potential to contribute to the development of sustainable and circular biomanufacturing.
Collapse
Affiliation(s)
- Neha Chandel
- School of Medical and Allied Sciences, GD Goenka University, Gurugram, Haryana, 122103, India
| | - Bharat Bhushan Singh
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chetna Dureja
- Center for Inflammatory and Infectious Diseases, Texas A&M Health Science Center, Institute of Bioscience and Technology, Houston, TX, USA
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Cho DH, Kim HJ, Oh SJ, Hwang JH, Shin N, Bhatia SK, Yoon JJ, Jeon JM, Yang YH. Strategy for efficiently utilizing Escherichia coli cells producing isobutanol by combining isobutanol and indigo production systems. J Biotechnol 2023; 367:62-70. [PMID: 37019156 DOI: 10.1016/j.jbiotec.2023.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Isobutanol is a potential biofuel, and its microbial production systems have demonstrated promising results. In a microbial system, the isobutanol produced is secreted into the media; however, the cells remaining after fermentation cannot be used efficiently during the isobutanol recovery process and are discarded as waste. To address this, we aimed to investigate the strategy of utilizing these remaining cells by combining the isobutanol production system with the indigo production system, wherein the product accumulates intracellularly. Accordingly, we constructed E. coli systems with genes, such as acetolactate synthase gene (alsS), ketol-acid reductoisomerase gene (ilvC), dihydroxyl-acid dehydratase (ilvD), and alpha-ketoisovalerate decarboxylase gene (kivD), for isobutanol production and genes, such as tryptophanase gene (tnaA) and flavin-containing monooxygenase gene (FMO), for indigo production. This system produced isobutanol and indigo simultaneously while accumulating indigo within cells. The production of isobutanol and indigo exhibited a strong linear correlation up to 72 h of production time; however, the pattern of isobutanol and indigo production varied. To our knowledge, this study is the first to simultaneously produce isobutanol and indigo and can potentially enhance the economy of biochemical production.
Collapse
Affiliation(s)
- Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, South Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea.
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, South Korea.
| |
Collapse
|