1
|
Fan Y, Zheng H, Feng L, To MKT, Kuang GM, Yeung EHK, Cheung KMC, Liu L, Cheung JPY. Elasticity and cross-sectional thickness of paraspinal muscles in progressive adolescent idiopathic scoliosis. Front Pediatr 2024; 12:1323756. [PMID: 38516354 PMCID: PMC10954774 DOI: 10.3389/fped.2024.1323756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Objectives (1) Compare the cross-sectional thickness (CST) and shear wave speed (SWS) of paraspinal muscles (PSM) in adolescent idiopathic scoliosis (AIS) with and without curve progression; (2) investigate the relationship between CST/SWS and radiographic characteristics in AIS with curve progression; (3) compare the CST/SWS between AIS and non-scoliosis controls. Methods This cross-sectional study analyzed the CST and SWS of PSM in 48 AIS with mild to moderate curvature and 24 non-scoliosis participants. Participants with scoliosis greater than 45° of Cobb angles were excluded. The Change of Cobb angles within the last 6-months was retrieved to allocate AIS into progression and non-progression groups. The SWS and CST of multifidus; longissimus and iliocostalis of the major curve were measured using B-mode ultrasound image with an elastography mode. Discrepancies of the SWS (SWS-ratio: SWS on the convex side divided by SWS on the concave side) and CST (CST-ratio: CST on the convex side divided by CST on the concave side) at the upper/lower end and apical vertebrae were studied. Results A higher SWS at the apical vertebrae on the concave side of the major curve (multifidus: 3.9 ± 1.0 m/s vs. 3.1 ± 0.6 m/s; p < 0.01, longissimus: 3.3 ± 1.0 m/s vs. 3.0 ± 0.9 m/s; p < 0.01, iliocostalis: 2.8 ± 1.0 m/s vs. 2.5 ± 0.8 m/s; p < 0.01) was observed in AIS with curve progression. A lower SWS-ratio at apical vertebrae was detected with a greater vertebral rotation in participants with curve progression (multifidus [grade II]: 0.7 ± 0.1 vs. grade I: 0.9 ± 0.2; p = 0.03, longissimus [grade II]: 0.8 ± 0.2 vs. grade I: 1.1 ± 0.2; p < 0.01). CST was not different among the progressive, non-progressive AIS and non-scoliosis controls. Conclusions Increased SWS of PSM without change of CST was observed on the concave side of the major curve in participants with progressive AIS.
Collapse
Affiliation(s)
- Yunli Fan
- Department of Physiotherapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Haiping Zheng
- Department of Medical Imaging-Ultrasound Division, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Lin Feng
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Michael K T To
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Guan-Ming Kuang
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Eric H K Yeung
- Department of Physiotherapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Li Liu
- Department of Medical Imaging-Ultrasound Division, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jason P Y Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Warneke K, Brinkmann A, Hillebrecht M, Schiemann S. Influence of Long-Lasting Static Stretching on Maximal Strength, Muscle Thickness and Flexibility. Front Physiol 2022; 13:878955. [PMID: 35694390 PMCID: PMC9174468 DOI: 10.3389/fphys.2022.878955] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background: In animal studies long-term stretching interventions up to several hours per day have shown large increases in muscle mass as well as maximal strength. The aim of this study was to investigate the effects of a long-term stretching on maximal strength, muscle cross sectional area (MCSA) and range of motion (ROM) in humans. Methods: 52 subjects were divided into an Intervention group (IG, n = 27) and a control group (CG, n = 25). IG stretched the plantar flexors for one hour per day for six weeks using an orthosis. Stretching was performed on one leg only to investigate the contralateral force transfer. Maximal isometric strength (MIS) and 1RM were both measured in extended knee joint. Furthermore, we investigated the MCSA of IG in the lateral head of the gastrocnemius (LG) using sonography. Additionally, ROM in the upper ankle was investigated via the functional “knee to wall stretch” test (KtW) and a goniometer device on the orthosis. A two-way ANOVA was performed in data analysis, using the Scheffé Test as post-hoc test. Results: There were high time-effects (p = 0.003, ƞ² = 0.090) and high interaction-effect (p < 0.001, ƞ²=0.387) for MIS and also high time-effects (p < 0.001, ƞ²=0.193) and interaction-effects (p < 0.001, ƞ²=0,362) for 1RM testing. Furthermore, we measured a significant increase of 15.2% in MCSA of LG with high time-effect (p < 0.001, ƞ²=0.545) and high interaction-effect (p=0.015, ƞ²=0.406). In ROM we found in both tests significant increases up to 27.3% with moderate time-effect (p < 0.001, ƞ²=0.129) and high interaction-effect (p < 0.001, ƞ²=0.199). Additionally, we measured significant contralateral force transfers in maximal strength tests of 11.4% (p < 0.001) in 1RM test and 1.4% (p=0.462) in MIS test. Overall, there we no significant effects in control situations for any parameter (CG and non-intervened leg of IG). Discussion: We hypothesize stretching-induced muscle damage comparable to effects of mechanical load of strength training, that led to hypertrophy and thus to an increase in maximal strength. Increases in ROM could be attributed to longitudinal hypertrophy effects, e.g., increase in serial sarcomeres. Measured cross-education effects could be explained by central neural adaptations due to stimulation of the stretched muscles.
Collapse
Affiliation(s)
- Konstantin Warneke
- Department for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
- *Correspondence: Konstantin Warneke,
| | - Anna Brinkmann
- Assistive Systems and Medical Device Technology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Sports Center, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Martin Hillebrecht
- Assistive Systems and Medical Device Technology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- University Sports Center, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Stephan Schiemann
- Department for Exercise, Sport and Health, Leuphana University, Lüneburg, Germany
| |
Collapse
|
3
|
The reliability of rehabilitative ultrasound to measure lateral abdominal muscle thickness: A systematic review and meta-analysis. Musculoskelet Sci Pract 2021; 53:102357. [PMID: 33743453 DOI: 10.1016/j.msksp.2021.102357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Variations in rehabilitative ultrasound imaging (RUSI) protocols may alter lateral abdominal muscle (LAM) thickness measurements. A standardised protocol is required for clinicians to accurately compare LAM thickness changes. OBJECTIVE In healthy and lower back pain (LBP) populations, to assess the 1) overall reliability of RUSI to diagnose LAM thickness via meta-analysis, 2) reliability of ultrasound variables to diagnose LAM thickness via systematic review, and 3) propose a RUSI protocol for the LAM using variables associated with excellent reliability (intraclass correlation coefficient [ICC] >0.9). DESIGN Systematic review and meta-analysis. METHOD Databases were searched from January 2000 for studies reporting the reliability of RUSI on the LAM at rest. Title, abstract and full-text screening were performed. Reference lists of reviews and included full-text articles were scanned for further articles. Study characteristic, ultrasound procedure and reliability data were extracted, and article quality assessed. Data was synthesised using meta-analysis to determine the overall reliability for RUSI in different subgroups; calculation of the mean ICCs and standard error of measurements of protocol variables; and narrative synthesis of protocols to contrast those of differing reliability. RESULTS Twenty-seven articles, involving 884 participants were included. Reliability ranged from good-to-excellent (ICC 0.859-0.958) in all subgroups. Protocols ranged in subject selection and position, examiner experience, transducer position with the comprehensiveness of protocol description the main limitation of the reviewed literature. Based on the findings an ultrasound protocol was proposed. CONCLUSIONS RUSI variables for the LAM at rest show moderate-to-excellent reliability; future research should explore reliability following the proposed protocol.
Collapse
|
4
|
Dallaway A, Kite C, Griffen C, Duncan M, Tallis J, Renshaw D, Hattersley J. Age-related degeneration of the lumbar paravertebral muscles: Systematic review and three-level meta-regression. Exp Gerontol 2020; 133:110856. [PMID: 32006635 DOI: 10.1016/j.exger.2020.110856] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Morphological changes of the lumbar spine muscles are not well characterised with ageing. To further the understanding of age-related degeneration of the lumbar spine musculature, normative morphological changes that occur within the paravertebral muscles must first be established. METHODS A systematic review and meta-regressions were conducted adhering to PRISMA guidelines. Searches for published and unpublished data were completed in June 2019. RESULTS Searches returned 4781 articles. 34 articles were included in the quantitative analysis. Three-level meta-analyses showed age-related atrophy (r = -0.26; 95% CI: -0.33, -0.17) and fat infiltration (r = 0.39; 95% CI: 0.28, 0.50) in the lumbar paravertebral muscles. Degenerative changes were muscle-specific and men (r = -0.32; 95% CI: -0.61, 0.01) exhibited significantly greater muscle atrophy than women (r = -0.24; 95% CI: -0.47, 0.03). Imaging modality, specifically ultrasound, also influenced age-related muscle atrophy. Measurements taken across all lumbar levels revealed the greatest fat infiltration with ageing (r = 0.58, 95% CI: 0.35, 0.74). Moderators explained a large proportion of between-study variance in true effects for muscle atrophy (72.6%) and fat infiltration (79.8%) models. CONCLUSIONS Lumbar paravertebral muscles undergo age-related degeneration in healthy adults with muscle, lumbar level and sex-specific responses. Future studies should use high-resolution imaging modalities to quantify muscle atrophy and fat infiltration.
Collapse
Affiliation(s)
- A Dallaway
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Science and Health Building, Whitefriars Street, Coventry University, Coventry CV1 2DS, United Kingdom; Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Rd, Coventry CV2 2DX, United Kingdom.
| | - C Kite
- School of Life and Health Sciences, Cell and Tissue Biomedical Research Group, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom; Centre for Active Living, University Centre Shrewsbury, University of Chester, Guildhall, Frankwell Quay, Shrewsbury SY3 8HQ, United Kingdom
| | - C Griffen
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Science and Health Building, Whitefriars Street, Coventry University, Coventry CV1 2DS, United Kingdom; Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Rd, Coventry CV2 2DX, United Kingdom
| | - M Duncan
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Science and Health Building, Whitefriars Street, Coventry University, Coventry CV1 2DS, United Kingdom; School of Life Sciences, Faculty of Health and Life Sciences, Science and Health Building, Whitefriars Street, Coventry University, Coventry CV1 2DS, United Kingdom
| | - J Tallis
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Science and Health Building, Whitefriars Street, Coventry University, Coventry CV1 2DS, United Kingdom; School of Life Sciences, Faculty of Health and Life Sciences, Science and Health Building, Whitefriars Street, Coventry University, Coventry CV1 2DS, United Kingdom
| | - D Renshaw
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Science and Health Building, Whitefriars Street, Coventry University, Coventry CV1 2DS, United Kingdom
| | - J Hattersley
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Science and Health Building, Whitefriars Street, Coventry University, Coventry CV1 2DS, United Kingdom; Human Metabolic Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Rd, Coventry CV2 2DX, United Kingdom
| |
Collapse
|