1
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
2
|
Qu Y, Shen Y, Teng L, Huang Y, Yang Y, Jian X, Fan S, Wu P, Fu Q. Chicoric acid attenuates tumor necrosis factor-α-induced inflammation and apoptosis via the Nrf2/HO-1, PI3K/AKT and NF-κB signaling pathways in C28/I2 cells and ameliorates the progression of osteoarthritis in a rat model. Int Immunopharmacol 2022; 111:109129. [PMID: 35961266 DOI: 10.1016/j.intimp.2022.109129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Osteoarthritis (OA) is the most common arthritis, and is characterized by inflammation and cartilage degradation. Chicoric acid (CA), a bioactive caffeic acid derivative isolated from the root of Taraxacum mongolicumHand. - Mazz., has been reported to have anti-inflammatory effects. However, the therapeutic effects of CA on chondrocyte inflammation remain unknown. Our study aimed to explore the effect of CA on OA both in vivo and in vitro. In vitro, CA treatment significantly suppressed the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and IL-12 in tumor necrosis factor alpha (TNF-α)-induced human C28/I2 chondrocytes. Moreover, CA attenuated TNF-α induced degradation of the extracellular matrix (ECM) by upregulating the expression of collagen Ⅱ and aggrecan, and downregulating ADAMTS-5 and matrix metalloproteinases (MMPs). Additionally, CA treatment inhibited apoptosis in C28/I2 cells by upregulating of Bcl-2 levels, downregulating Bax and ROS levels, and activating the Nrf2/HO-1 pathway. Mechanistically, CA exerted an anti-inflammatory effect by inhibiting the PI3K/AKT and NF-κB signaling pathways, enhancing Nrf-2/HO-1 to limit the activation of NF-κB. In vivo experiments also proved the therapeutic effects of CA on OA in rats. These findings indicate that CA may become a new drug for the treatment of OA.
Collapse
Affiliation(s)
- Yuhan Qu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Li Teng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yuting Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xi Jian
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shengli Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Ping Wu
- Department of Pharmacy, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu 610041, China.
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
Wang JY, Chen CM, Chen CF, Wu PK, Chen WM. Suppression of Estrogen Receptor Alpha Inhibits Cell Proliferation, Differentiation and Enhances the Chemosensitivity of P53-Positive U2OS Osteosarcoma Cell. Int J Mol Sci 2021; 22:ijms222011238. [PMID: 34681897 PMCID: PMC8540067 DOI: 10.3390/ijms222011238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
Osteosarcoma is a highly malignant musculoskeletal tumor that is commonly noticed in adolescent children, young children, and elderly adults. Due to advances in surgery, chemotherapy and imaging technology, survival rates have improved to 70–80%, but chemical treatments do not enhance patient survival; in addition, the survival rate after chemical treatments is still low. The most obvious clinical feature of osteosarcoma is new bone formation, which is called “sun burst”. Estrogen receptor alpha (ERα) is an essential feature of osteogenesis and regulates cell growth in various tumors, including osteosarcoma. In this study, we sought to investigate the role of ERα in osteosarcoma and to determine if ERα can be used as a target to facilitate the chemosensitivity of osteosarcoma to current treatments. The growth rate of each cell clone was assayed by MTT and trypan blue cell counting, and cell cycle analysis was conducted by flow cytometry. Osteogenic differentiation was induced by osteogenic induction medium and quantified by ARS staining. The effects of ERα on the chemoresponse of OS cells treated with doxorubicin were evaluated by colony formation assay. Mechanistic studies were conducted by examining the levels of proteins by Western blot. The role of ERα on OS prognosis was investigated by an immunohistochemical analysis of OS tissue array. The results showed an impaired growth rate and a decreased osteogenesis ability in the ERα-silenced P53(+) OS cell line U2OS, but not in P53(−) SAOS2 cells, compared with the parental cell line. Cotreatment with tamoxifen, an estrogen receptor inhibitor, increased the sensitivity to doxorubicin, which decreased the colony formation of P53(+) U2OS cells. Cell cycle arrest in the S phase was observed in P53(+) U2OS cells cotreated with low doses of doxorubicin and tamoxifen, while increased levels of apoptosis factors indicated cell death. Moreover, patients with ER−/P53(+) U2OS showed better chemoresponse rates (necrosis rate > 90%) and impaired tumor sizes, which were compatible with the findings of basic research. Taken together, ERα may be a potential target of the current treatments for osteosarcoma that can control tumor growth and improve chemosensitivity. In addition, the expression of ERα in osteosarcoma can be a prognostic factor to predict the response to chemotherapy.
Collapse
Affiliation(s)
- Jir-You Wang
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence:
| | - Wei-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| |
Collapse
|
4
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
5
|
Wang T, Jin J, Qian C, Lou J, Lin J, Xu A, Xia K, Jin L, Liu B, Tao H, Yang Z, Yu W. Estrogen/ER in anti-tumor immunity regulation to tumor cell and tumor microenvironment. Cancer Cell Int 2021; 21:295. [PMID: 34098945 PMCID: PMC8182917 DOI: 10.1186/s12935-021-02003-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
As the essential sexual hormone, estrogen and its receptor has been proved to participate in the regulation of autoimmunity diseases and anti-tumor immunity. The adjustment of tumor immunity is related to the interaction between cancer cells, immune cells and tumor microenvironment, all of which is considered as the potential target in estrogen-induced immune system regulation. However, the specific mechanism of estrogen-induced immunity is poorly understood. Typically, estrogen causes the nuclear localization of estrogen/estrogen receptor complex and alternates the transcription pattern of target genes, leading to the reprogramming of tumor cells and differentiation of immune cells. However, the estrogen-induced non-canonical signal pathway activation is also crucial to the rapid function of estrogen, such as NF-κB, MAPK-ERK, and β-catenin pathway activation, which has not been totally illuminated. So, the investigation of estrogen modulatory mechanisms in these two manners is vital for the tumor immunity and can provide the potential for endocrine hormone targeted cancer immunotherapy. Here, this review summarized the estrogen-induced canonical and non-canonical signal transduction pathway and aimed to focus on the relationship among estrogen and cancer immunity as well as immune-related tumor microenvironment regulation. Results from these preclinical researches elucidated that the estrogen-target therapy has the application prospect of cancer immunotherapy, which requires the further translational research of these treatment strategies.
Collapse
Affiliation(s)
- Tiecheng Wang
- Department of Orthopedics, Shengzhou People's Hospital, #666 Dangui Road, Shengzhou, 312400, Zhejiang, People's Republic of China
| | - Jiakang Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Chao Qian
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Jianan Lou
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Jinti Lin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Libin Jin
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China
| | - Zhengming Yang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China.
| | - Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Zhang JQ, Zhang T, Xue H, Zuo WB, Li YN, Zhao Y, Sun G, Fu ZR, Zhang Q, Zhao X, Teng Y, Wang AQ, Li JZ, Wang Y, Jin CH. Calycosin Induces Gastric Cancer Cell Apoptosis via the ROS-Mediated MAPK/STAT3/NF-κB Pathway. Onco Targets Ther 2021; 14:2505-2517. [PMID: 33883905 PMCID: PMC8053610 DOI: 10.2147/ott.s292388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/05/2021] [Indexed: 11/23/2022] Open
Abstract
Background Calycosin, an active compound in plants, can promote the apoptosis of various cancer cells; however, the mechanism by which it regulates reactive oxygen species (ROS) in gastric cancer (GC) cells remains unclear. Purpose In this study, we investigated the effects of calycosin on apoptosis, the cell cycle, and migration in GC cells under ROS regulation. Results The results of the Cell Counting Kit-8 assay suggested that calycosin had significant cytotoxic effects on 12 gastric cancer cells, but no significant cytotoxic effects on normal cells. Hoechst 33342/propidium iodide (PI) double staining and flow cytometry showed that calycosin had clear pro-apoptotic effects on AGS cells. Western blotting revealed that the expression of cytochrome C and pro-apoptotic proteins B-cell lymphoma 2 (Bcl-2)-associated agonist of cell death (Bad), cleaved (cle)-caspase-3, and cle-poly (ADP-ribose) polymerase gradually increased, and the expression of anti-apoptotic protein Bcl-2 gradually decreased. Calycosin also decreased the expression of extracellular signal-regulated kinase, nuclear factor kappa B (NF-κB), and signal transducer and activator of transcription 3 (STAT3), and increased the phosphorylation levels of p38, c-Jun N-terminal kinase, and inhibitor of NF-κB. In addition, calycosin markedly increased ROS accumulation, and pretreatment with active oxygen scavenger n-acetyl-l-cysteine (NAC) clearly inhibited apoptosis. Calycosin downregulated the cell cycle proteins cyclin-dependent kinase 2 (CDK2), CDK4, CDK6, cyclin D1, and cyclin E; upregulated p21 and p27; and arrested cells in the G0/G1 phase. Similarly, calycosin also downregulated Snail family transcriptional repressor 1, E-cadherin, and β-catenin and inhibited cell migration. However, pretreatment with NAC inhibited the calycosin-induced effects of cycle arrest and migration. Conclusion In summary, calycosin induces apoptosis via ROS-mediated MAPK/STAT3/NF-κB pathways, thereby exerting its anti-carcinogenic functions in GC cells.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Jian-Qiang Zhang
- Department of Food Science and Technology, College of Food Science, Northeast Agricultural University, Harbin, People's Republic of China.,Heilongjiang Heyi Dairy Technology Co. Ltd., Daqing, People's Republic of China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Wen-Bo Zuo
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Yan-Nan Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Yue Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Geng Sun
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Zhong-Ren Fu
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Yue Teng
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - An-Qi Wang
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Jia-Zhu Li
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China
| | - Ying Wang
- Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China.,National Coarse Cereals Engineering Research Center, Daqing, People's Republic of China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China.,Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing, People's Republic of China.,National Coarse Cereals Engineering Research Center, Daqing, People's Republic of China
| |
Collapse
|
7
|
Özgür A. Investigation of anticancer activities of STA-9090 (ganetespib) as a second generation HSP90 inhibitor in Saos-2 osteosarcoma cells. J Chemother 2021; 33:554-563. [PMID: 33794753 DOI: 10.1080/1120009x.2021.1908650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Osteosarcoma is common childhood tumour type of the bone. Chemotherapy is the most important step in treatment of osteosarcoma. Despite advanced diagnosis methods and target specific cancer therapeutics, osteosarcoma has still a high mortality rate and a tendency to metastasize. Therefore, new therapeutic strategies are evaluated in osteosarcoma treatment in pre-clinical and clinical studies. In the last ten years, heat shock protein 90 (HSP90) has been important biological target to design target specific cancer drugs. HSP90 play vital roles in proper folding, stabilization and maintenance of oncogenic client proteins in tumorigenesis. Therefore, inhibition of HSP90 has been significant therapeutic aspects in cancer drug design. STA-9090 (ganetespib) is a second generation small molecule HSP90 inhibitor which blocks tumurogenesis in cancer cells. STA-9090 inhibited ATP hydrolysis and protein folding process of HSP90. In this study, STA-9090 decreased Saos-2 cell proliferation and IC50 dose of STA-9090 was found out as 18.71 µM and 10.25 µM at 24 h and 48 h, respectively. STA-9090 inhibited HSP90 ATPase function and disrupted oncogenic client protein folding activity. Also, STA-9090 decreased protein level of the HSP90 in osteosarcoma cells. Expression analysis of osteosarcoma and bone metabolism related genes was performed by RT2 Profiler PCR Array. This study has found the down-regulation of the expression levels of oncogenic genes: DKK1, TWIST1, WNT10B, WNT3A, RANK, RANKL, PTH, FGFR1, FGFR2, LTBP2, IL6, TGFβ1, MMP2 and SPARC genes, in STA-9090 treated Saso-2 cells. Furthermore, expression levels of osteosarcoma related genes, OPG, ERα, ERβ, IL15, BMP2 and BMP7, were found to have increased significantly. Biological activities of STA-9090 on Saos-2 cell line show its potential as a target specific drug to inhibit osteosarcoma and its metastasis.
Collapse
Affiliation(s)
- Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpaşa University, Tokat, Turkey
| |
Collapse
|
8
|
Jin W, Gu C, Zhou L, Yang X, Gui M, Zhang J, Chen J, Dong X, Yuan Q, Shan L. Theabrownin inhibits the cytoskeleton‑dependent cell cycle, migration and invasion of human osteosarcoma cells through NF‑κB pathway‑related mechanisms. Oncol Rep 2020; 44:2621-2633. [PMID: 33125106 PMCID: PMC7640368 DOI: 10.3892/or.2020.7801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Considering the high metastatic potential of osteosarcoma, not only pro-apoptosis, but also anti-metastasis is important for anti-osteosarcoma therapy. Previously, the authors reported the pro-apoptotic and tumor-inhibitory effects of theabrownin (TB) on osteosarcoma cells; however, its effects on the metastasis-related migration and invasion of osteosarcoma cells remain unknown. The present study conducted RNA sequencing (RNA-seq) on xenograft zebrafish samples and performed in vitro experiments, including RT-qPCR, cell viability analysis, clone formation assay, cell cycle analysis, immunofluorescence, cell migration assay, cell invasion assay, wound healing assay and western blot (WB) analysis to evaluate the anti-metastatic effects and mechanism of TB against osteosarcoma cells. The RNA-seq data revealed that TB significantly downregulated the expression of genes involved in the microtubule bundle formation of U2OS cells, which was verified by RT-qPCR. The cell viability and clone formation data indicated that TB significantly inhibited U2OS cell viability and colony numbers. The results of cell cycle analysis revealed the blocked cell cycle progression of U2OS by TB. The immunofluorescent data revealed an evident cytoskeleton-inhibitory effect of TB against the microfilament and microtubule formation of U2OS cells. The results of cell migration and invasion demonstrated that TB significantly inhibited U2OS cell migration and invasion. The results of WB analysis revealed that TB significantly regulated key molecules of epithelial-mesenchymal transition [EMT; e.g., E-cadherin, vimentin, Snail-1, Slug and zinc finger E-box-binding homeobox 1 (ZEB-1)] and those of the nuclear factor (NF)-κB pathway (e.g., NF-κB, phospho-IKKα and phospho-IKKβ), indicating that NF-κB pathway-related EMT suppression may mediate the mechanisms underlying the anti-migratory and anti-invasive effects of TB against osteosarcoma. To the best of our knowledge, this is the first study on the inhibitory effects and mechanisms of TB on the cytoskeleton-dependent cell cycle, migration and invasion of human osteosarcoma cells. The findings presented herein suggest that TB may be a promising anti-metastatic candidate for anti-osteosarcoma therapy.
Collapse
Affiliation(s)
- Wangdong Jin
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Chaoqun Gu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xinyu Yang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Mengyuan Gui
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jin Zhang
- Theabio Co., Ltd., Hangzhou, Zhejiang 311121, P.R. China
| | - Jie Chen
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiang Yuan
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
9
|
Tian W, Wang ZW, Yuan BM, Bao YG. Calycosin induces apoptosis in osteosarcoma cell line via ERβ‑mediated PI3K/Akt signaling pathways. Mol Med Rep 2020; 21:2349-2356. [PMID: 32236598 PMCID: PMC7185272 DOI: 10.3892/mmr.2020.11039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that calycosin, a natural phytoestrogen which is structurally similar to estrogen, inhibits proliferation and induces apoptosis in estrogen-dependent cancer types via the estrogen receptor (ER)β-induced inhibition of PI3K/Akt. Therefore, the aims of the present study were to investigate the effects of calycosin on human osteosarcoma (OS), and to examine the molecular mechanisms associated with ERβ. Human OS MG-63 cells were treated with various concentrations of calycosin, and MTT and flow cytometry assays were used to assess the effects of calycosin on cellular proliferation and apoptosis. In addition, protein expression levels of ERβ, phosphorylated (p)-PI3K, p-Akt, cleaved poly (ADP-ribose) polymerase 1 (PARP) and cleaved caspase-3 were evaluated by western blot analysis. The present results suggested that calycosin inhibited proliferation and induced apoptosis in MG-63 cells. Furthermore, increased ERβ expression was detected in OS MG-63 cells treated with calycosin, and an ERβ inhibitor (PHTPP) reversed calycosin-induced cytotoxicity and apoptosis. Moreover, phosphorylation levels of PI3K and Akt were significantly downregulated after calycosin treatment, whereas PHTPP reversed their phosphorylation. ERβ-mediated PI3K/Akt downstream signaling pathways were found to influence the activity of poly (ADP-ribose) polymerase 1 and caspase-3. Thus, the present results indicated that calycosin inhibited proliferation and induced apoptosis in OS MG-63 cells, and that these effects were mediated by ERβ-dependent inhibition of the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Wei Tian
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Zhi-Wei Wang
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Bao-Ming Yuan
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| | - Yong-Ge Bao
- Department of Orthopedics, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028007, P.R. China
| |
Collapse
|
10
|
Yang Z, Yu W, Liu B, Yang M, Tao H. Estrogen receptor β induces autophagy of osteosarcoma through the mTOR signaling pathway. J Orthop Surg Res 2020; 15:50. [PMID: 32054506 PMCID: PMC7020596 DOI: 10.1186/s13018-020-1575-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 01/29/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Estrogen receptor beta (ERβ) was considered as a tumor-inhibiting factor in estrogen-sensitive malignant tumors. In this study, we intended to investigate whether ERβ was involved in inducing autophagy in osteosarcoma. METHODS This is an experimental study. The associations between ERβ and autophagy were detected in osteosarcoma U2-OS cells which were treated with E2, E2 + 2,3-Bis (4-hydroxyphenyl) propionitrile (DPN, ERβ agonists), E2 + DPN + water, E2 + DPN + 3-Methyladenine (3-MA, autophagy inhibitor), respectively. Cell viability and death were detected using cell counting kit 8 assay and flow cytometry, respectively. In addition, the expression of autophagy marker LC3II/I, sequestosome 1 (P62), mammalian target of rapamycin (mTOR), and phosphorylated-mTOR (p-mTOR) was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS Cell viability was significantly decreased with DPN treatment, while was reversed with 3-MA treatment. DPN treatment decreased living cells proportion and increased cell apoptosis proportion, while 3-MA treatment reversed those changes. However, there were significant differences between the E2 group and the E2 + DPN + 3-MA group for the living cell proportion and cell apoptosis proportion, suggesting apoptosis and autophagy all were induced. In addition, DPN treatment upregulated the LC3II/I expression level and downregulated P62 and mTOR (mRNA level) and p-mTOR (protein level) expression levels. CONCLUSION ERβ inhibited the cell viability and mediated cell death by inducing apoptosis and autophagy in osteosarcoma. ERβ-induced autophagy in osteosarcoma was associated with downregulating the P62 expression level and inhibiting mTOR activation.
Collapse
Affiliation(s)
- Zhengming Yang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.1511 Jianghong Road, Binjiang District, Zhejiang, 310000 Hangzhou China
| | - Wei Yu
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.1511 Jianghong Road, Binjiang District, Zhejiang, 310000 Hangzhou China
| | - Bing Liu
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.1511 Jianghong Road, Binjiang District, Zhejiang, 310000 Hangzhou China
| | - Minfei Yang
- Department of Emergency Room, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310000 Hangzhou China
| | - Huimin Tao
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.1511 Jianghong Road, Binjiang District, Zhejiang, 310000 Hangzhou China
| |
Collapse
|
11
|
El-Gendy AA, Elsaed WM, Abdallah HI. Potential role of estradiol in ovariectomy-induced derangement of renal endocrine functions. Ren Fail 2019; 41:507-520. [PMID: 31216906 PMCID: PMC6586115 DOI: 10.1080/0886022x.2019.1625787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Menopause is an important physiological event associated with structural and functional changes in the kidneys. An animal model of bilateral ovariectomy was used to study the effects of estrogen depletion, replacement and antiestrogen on renal structure and endocrine function. Sixty female rats were divided into six groups; group I was the control group, the remaining five groups underwent ovariectomy: group II received no treatment. The other groups received estradiol in group III, tamoxifen in group IV, estradiol followed by tamoxifen in group V and tamoxifen followed by estradiol in group VI. Serum creatinine, blood urea nitrogen, and endocrine functions of kidney were measured. Tissue samples were examined both microscopically for beta estrogen receptors and ultrastructurally for cell changes. Groups II, IV & VI showed a significant increase in creatinine, blood urea nitrogen, renal malondialdehyde, renal erythropoietin, plasma renin and plasma prostaglandin E2 and a significant decrease in renal antioxidants and serum vitamin D3. Groups III &V had a significant decrease in creatinine, blood urea nitrogen, renal malondialdehyde and renal erythropoietin with an increase in renal antioxidants, plasma prostaglandin E2 and serum vitamin D3. Histopathological and ultrastructural examinations revealed atrophic tubular changes in group II. The changes were less marked in groups III &V and more extensive in groups IV & VI. Estrogen receptor beta staining showed progressively increased expression in the absence of estrogen. Structural and most endocrine functions of the kidney were significantly affected by estradiol deficiency. Estradiol replacement exhibited a protective effect on renal tissue and endocrine functions.
Collapse
Affiliation(s)
- Ahmed A El-Gendy
- a Department of Medical Physiology, Faculty of Medicine , Taibah University , Madinah , Saudi Arabia.,b Department of Medical Physiology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Wael M Elsaed
- c Department of Anatomy & Embryology, Faculty of Medicine , Taibah University , Madinah , Saudi Arabia.,d Department of Anatomy & Embryology, Faculty of Medicine , Mansoura University , Mansoura , Egypt
| | - Hesham I Abdallah
- c Department of Anatomy & Embryology, Faculty of Medicine , Taibah University , Madinah , Saudi Arabia.,e Department of Anatomy & Embryology, Faculty of Medicine , Ain Shams University , Cairo , Egypt
| |
Collapse
|
12
|
Zhang Y, Yin C, Zhou X, Wu Y, Wang L. Silencing of estrogen receptor β promotes the invasion and migration of osteosarcoma cells through activating Wnt signaling pathway. Onco Targets Ther 2019; 12:6779-6788. [PMID: 31692529 PMCID: PMC6710541 DOI: 10.2147/ott.s219222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose This study aimed to evaluate the specific roles of estrogen receptor β (ERβ) on the invasion and migration of osteosarcoma (OS) cells and explore the regulatory mechanisms relating with Wnt signaling pathway. Methods The expression of ERβ was detected in human OS tissues by quantitative real-time PCR and immunohistochemistry. U2-OS cells were transfected with siRNA-ERβ (si-ERβ) to downregulate ERβ and treated with FH535 to inhibit Wnt signaling. The migration and invasion ability was detected by scratch and transwell assay, respectively. The expression of β-catenin, MMP-7, and MMP-9 was detected by Western blot. Subcutaneous tumor-bearing model was established by injection of U2-OS cells into mice, and the tumor volumes were measured. Orthotopic transplantation model was established by transplantation of tumor tissues into the liver of mice, and the metastatic tumors were counted. Results ERβ was downregulated in human OS tissues and U2-OS cells. The transfection of si-ERβ significantly increased the scratch healing rate; the number of invasion cells; and the expression of β-catenin, MMP-7, and MMP-9 in U2-OS cells. The injection of si-ERβ-transfected U2-OS cells into mice significantly increased the subcutaneous tumor volume; the expression of β-catenin, MMP-7, and MMP-9; and the number of metastatic tumors in liver tissues. The promoting effects of si-ERβ on the invasion and migration of U2-OS cells were significantly reversed by FH535 in vitro and in vivo. Conclusion Silencing of ERβ promotes the invasion and migration of OS cells via activating Wnt signaling pathway.
Collapse
Affiliation(s)
- Yiping Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| | - Changchang Yin
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| | - Xufeng Zhou
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| | - Yahua Wu
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| | - Lili Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College of Jiujiang University, Jiujiang City, Jiangxi Province 332000, People's Republic of China
| |
Collapse
|
13
|
Yang ZM, Yang MF, Yu W, Tao HM. Molecular mechanisms of estrogen receptor β-induced apoptosis and autophagy in tumors: implication for treating osteosarcoma. J Int Med Res 2019; 47:4644-4655. [PMID: 31526167 PMCID: PMC6833400 DOI: 10.1177/0300060519871373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The estrogen receptors α (ERα) and β (ERβ) are located in the nucleus and bind to estrogen to initiate transcription of estrogen-responsive genes. In a variety of tumor cells, ERβ has been shown to be a tumor suppressor. In particular, ERβ has anti-proliferative effects in osteosarcoma cells. Additionally, ERβ has been proven to regulate the apoptosis-related molecules IAP, BAX, caspase-3, and PARP, and to act on the NF-κB/BCL-2 pathway to induce apoptosis in tumors. Moreover, ERβ can regulate the expression of the autophagy associated markers LC3-I/LC-3II and p62 and induce autophagy in tumors by inhibiting the PI3K/AKT/mTOR pathway and activating the AMPK pathway. Here, we review the molecular mechanisms by which ERβ induces apoptosis and autophagy in a variety of tumors to further delineate more specific molecular mechanisms underlying osteosarcoma tumorigenesis and pathogenesis. Considering the broad involvement of ERβ in apoptosis, autophagy, and their interaction, it is plausible that the critical role of ERβ in inhibiting the proliferation and metastasis of osteosarcoma cells is closely related to its regulation of apoptosis and autophagy.
Collapse
Affiliation(s)
- Zheng-Ming Yang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Fei Yang
- Department of Emergency, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui-Min Tao
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Overexpression of ERβ inhibits the proliferation through regulating TNG-β signaling pathway in osteosarcoma. Pathol Res Pract 2019; 215:152568. [PMID: 31383536 DOI: 10.1016/j.prp.2019.152568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
The present study aimed to explore the potential anti-tumor effect of ERβ overexpression and investigate its related mechanism in osteosarcoma. Cell cycle and apoptosis rates were measured by flow cytometry. Cell proliferation and formation of autophagosome were assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and dansylcadaverine (MDC) staining assay. Cell migration and invasion were detected by wound healing assay and transwell assay. Western blot analysis was designed to detect the protein expressions of surviving, Bax, LC-3 П, Beclin-1, ERβ, TβRⅠ, TβRⅡ, Smad2, Smad3 and Smad7. Real-Time fluorogenic PCR was designed to examine the mRNA expressions of surviving, Bax, ERβ, TβRⅠ, TβRII, Smad2, Smad3 and Smad7. The results showed that ERβ overexpression inhibited cell proliferation, migration and invasion, blocked cell cycle, and induced apoptosis and autophagy. Additionally, ERβ overexpression significantly inhibited the expression of surviving, TβRⅠ, TβRⅡ, Smad2 and Smad3. Meanwhile, the expressions of Bax, LC-3 П, Beclin-1 and Smad7 were dramatically upregulated by ERβ overexpression. In conclusion, ERβ overexpression could inhibit cell proliferation, migration and invasion, block cell cycle, and promote apoptosis and autophagy in OS by downregulating TNG-β signaling pathway.
Collapse
|
15
|
Wang Z, Chen X, Zhao Y, Jin Y, Zheng J. G-protein-coupled estrogen receptor suppresses the migration of osteosarcoma cells via post-translational regulation of Snail. J Cancer Res Clin Oncol 2018; 145:87-96. [DOI: 10.1007/s00432-018-2768-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/06/2018] [Indexed: 11/30/2022]
|